861 resultados para scenario clustering
Resumo:
The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
The development in power systems and the introduction of decentralized generation and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which considers not only the generation, but also the management of loads through demand response programs, energy storage units, EVs and other players in a liberalized electricity markets environment. This paper proposes a methodology to be used by Virtual Power Players (VPPs), concerning the energy resource scheduling in smart grids, considering day-ahead, hour-ahead and real-time scheduling. The case study considers a 33-bus distribution network with high penetration of distributed energy resources. The wind generation profile is based on a real Portuguese wind farm. Four scenarios are presented taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour-ahead and realtime scheduling.
Resumo:
Epidemiologic studies have reported an inverse association between dairy product consumption and cardiometabolic risk factors in adults, but this relation is relatively unexplored in adolescents. We hypothesized that a higher dairy product intake is associated with lower cardiometabolic risk factor clustering in adolescents. To test this hypothesis, a cross-sectional study was conducted with 494 adolescents aged 15 to 18 years from the Azorean Archipelago, Portugal. We measured fasting glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, body fat, and cardiorespiratory fitness. We also calculated homeostatic model assessment and total cholesterol/high-density lipoprotein cholesterol ratio. For each one of these variables, a z score was computed using age and sex. A cardiometabolic risk score (CMRS) was constructed by summing up the z scores of all individual risk factors. High risk was considered to exist when an individual had at least 1 SD from this score. Diet was evaluated using a food frequency questionnaire, and the intake of total dairy (included milk, yogurt, and cheese), milk, yogurt, and cheese was categorized as low (equal to or below the median of the total sample) or “appropriate” (above the median of the total sample).The association between dairy product intake and CMRS was evaluated using separate logistic regression, and the results were adjusted for confounders. Adolescents with high milk intake had lower CMRS, compared with those with low intake (10.6% vs 18.1%, P = .018). Adolescents with appropriate milk intake were less likely to have high CMRS than those with low milk intake (odds ratio, 0.531; 95% confidence interval, 0.302-0.931). No association was found between CMRS and total dairy, yogurt, and cheese intake. Only milk intake seems to be inversely related to CMRS in adolescents.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
O objetivo desta dissertação foi estudar um conjunto de empresas cotadas na bolsa de valores de Lisboa, para identificar aquelas que têm um comportamento semelhante ao longo do tempo. Para isso utilizamos algoritmos de Clustering tais como K-Means, PAM, Modelos hierárquicos, Funny e C-Means tanto com a distância euclidiana como com a distância de Manhattan. Para selecionar o melhor número de clusters identificado por cada um dos algoritmos testados, recorremos a alguns índices de avaliação/validação de clusters como o Davies Bouldin e Calinski-Harabasz entre outros.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Os sistemas autónomos trazem como mais valia aos cenários de busca e salvamento a possibilidade de minimizar a presença de Humanos em situações de perigo e a capacidade de aceder a locais de difícil acesso. Na dissertação propõe-se endereçar novos métodos para perceção e navegação de veículos aéreos não tripulados (UAV), tendo como foco principal o planeamento de trajetórias e deteção de obstáculos. No que respeita à perceção foi desenvolvido um método para gerar clusters tendo por base os voxels gerados pelo Octomap. Na área de navegação, foram desenvolvidos dois novos métodos de planeamento de trajetórias, GPRM (Grid Probabilistic Roadmap) e PPRM (Particle Probabilistic Roadmap), que tem como método base para o seu desenvolvimento o PRM. O primeiro método desenvolvido, GPRM, espalha as partículas numa grid pré-definida, construindo posteriormente o roadmap na área determinada pela grid e com isto estima o trajeto mais curto até ao ponto destino. O segundo método desenvolvido, PPRM, espalha as partículas pelo cenário de aplicação, gera o roadmap considerando o mapa total e atribui uma probabilidade que irá permitir definir a trajetória otimizada. Para analisar a performance de cada método em comparação com o PRM, efetua-se a sua avaliação em três cenários distintos com recurso ao simulador MORSE.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Logica Computicional