720 resultados para scaffold
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3 mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5 mu g rhBMP-2), P-1 (defect filled with 5 mu g P-1), FS (defect filled with 8 mu g FS), FS/rhBMP-2 (defect filled with 8 mu g FS and 5 mu g rhBMP-2), FS/P-1 (defect filled with 8 mu g FS and 5 mu g P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p < 0.05), except for the rhBMP-2 and FS/rhBMP-2 groups (p > 0.05). A statistically significant difference (p < 0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biological behavior of a new bioactive material composed of calcium-deficient hydroxyapatite, octacalcium phosphate, and beta-tricalcium phosphate was investigated by in vitro indirect and direct cytotoxicity, cell adhesion and proliferation tests, and by in vivo subcutaneous and bone implantation in rats. The results of the in vitro studies showed that the material is biocompatible and no cytotoxic. Slightly poorer initial cell adhesion and lower cell proliferation than in control was observed, which were attributed to the reactivity and roughness of the material surface, In vivo results showed that the material is biodegradable and bioactive in bone tissue, but only biocompatible and partially biodegradable in soft tissue.
Resumo:
Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study.
Resumo:
Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites.
Scaffold nanoestruturado utilizando-se celulose bacteriana/fosfatos de cálcio para regeneração óssea
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
This research investigated someone of the main problems connected to the application of Tissue Engineering in the prosthetic field, in particular about the characterization of the scaffolding materials and biomimetic strategies adopted in order to promote the implant integration. The spectroscopic and thermal analysis techniques were usefully applied to characterize the chemico-physical properties of the materials such as – crystallinity; – relative composition in case of composite materials; – Structure and conformation of polymeric and peptidic chains; – mechanism and degradation rate; – Intramolecular and intermolecular interactions (hydrogen bonds, aliphatic interactions). This kind of information are of great importance in the comprehension of the interactions that scaffold undergoes when it is in contact with biological tissues; this information are fundamental to predict biodegradation mechanisms and to understand how chemico-physical properties change during the degradation process. In order to fully characterize biomaterials, this findings must be integrated by information relative to mechanical aspects and in vitro and in vivo behavior thanks to collaborations with biomedical engineers and biologists. This study was focussed on three different systems that correspond to three different strategies adopted in Tissue Engineering: biomimetic replica of fibrous 3-D structure of extracellular matrix (PCL-PLLA), incorporation of an apatitic phase similar to bone inorganic phase to promote biomineralization (PCL-HA), surface modification with synthetic oligopeptides that elicit the interaction with osteoblasts. The characterization of the PCL-PLLA composite underlined that the degradation started along PLLA fibres, which are more hydrophylic, and they serve as a guide for tissue regeneration. Moreover it was found that some cellular lines are more active in the colonization of the scaffold. In the PCL-HA composite, the weight ratio between the polymeric and the inorganic phase plays an essential role both in the degradation process and in the biomineralization of the material. The study of self-assembling peptides allowed to clarify the influence of primary structure on intermolecular and intermolecular interactions, that lead to the formation of the secondary structure and it was possible to find a new class of oligopeptides useful to functionalize materials surface. Among the analytical techniques used in this study, Raman vibrational spectroscopy played a major role, being non-destructive and non-invasive, two properties that make it suitable to degradation studies and to morphological characterization. Also micro-IR spectroscopy was useful in the comprehension of peptide structure on oxidized titanium: up to date this study was one of the first to employ this relatively new technique in the biomedical field.
Resumo:
Specific aims The aim is to improve the treatment of the bone losses at the metacarpal bones level (both diaphysis and epiphysis) combining microsurgery, tissue engineering and biomaterials, so to minimize the donor side morbidity and optimize healing and outcomes. Methods Pre-operative controlateral X-ray or 3-D CT to allow custom-made HA scaffolds. Cement as temporary spacer in acute lesion and monitoring of infective risks. Treatment of the bone loss recurring to pre-fabricated or custom-made HA scaffolds, adding platelet gel or growth factor OP1. Stable synthesis. Control group with auto/omografts. Outcome indices: % of bone-union; finger TAM, Kapandji, DASH score; NMR and Scintigraphy at 180 days for revascularisation and bio-substitution of the scaffold. Preliminary results The authors just treated 6 patients, 4 males and 2 females, with an average age of 38.5 yrs, affected by segmental bone losses at the hand and wrist, recurring to pre-fabricated not vascularised scaffolds. In all cases the synthesis was performed with angular stability plates and a stable synthesis achieved. All patients have been controlled at a mean follow-up of 10.5 months (from 2 to 16 ). In all case but one the bone-scaffold osteo-integration was achieved at an average of 38 days at the hand, and 46 days at the wrist. The outcome studies, according to the DASH score, finger TAM, and Kapandji, were good and excellent in 5 cases, poor in one.
Resumo:
Nel corso degli anni diverse sono le tecniche proposte per il trattamento delle lesioni osteocondrali, da quelle mini-invasive con stimolazione midollare fino a quelle più aggressive basate sul trapianto di tessuti autologhi o eterologhi. Tutti questi metodi hanno comunque dei difetti ed è questo il motivo per cui il trattamento delle lesioni osteocondrali rappresenta tuttora una sfida per il chirurgo ortopedico, in considerazione dell’alta specializzazione e del basso potere di guarigione del tessuto cartilagineo. Buoni risultati sono stati ottenuti con innesti bioingegnerizzati o matrici polimeriche impiantati nei siti danneggiati. La quantità di scaffolds in uso per la riparazione condrale ed osteocondrale è molto ampia; essi differiscono non solo per il tipo di materiali usati per la loro realizzazione, ma anche per la presenza di promotori di una o più linee cellulari , su base condrogenica o osteogenica. Quando ci si approccia ad una lesione condrale di grandi dimensioni, l’osso sub-condrale è anch’esso coinvolto e necessita di trattamento per ottenere il corretto ripristino degli strati articolari più superficiali. La scelta più giusta sembra essere un innesto osteocondrale bioingegnerizzato, pronto per l’uso ed immediatamente disponibile, che consenta di effettuare il trattamento in un unico tempo chirurgico. Sulla base di questo razionale, dopo uno studio preclinico animale e previa autorizzazione del comitato etico locale, abbiamo condotto uno studio clinico clinico pilota utilizzando un nuovo innesto biomimetico nanostrutturato per il trattamento di lesioni condrali ed osteocondrali del ginocchio; la sua sicurezza e maneggevolezza, così come la facile riproducibilità della tecnica chirurgica ed i risultati clinici ottenuti sono stati valutati nel tempo a 6, 12, 24, 36 e 48 mesi dall’impianto in modo da testare il suo potenziale intrinseco senza l’aggiunta di alcuna linea cellulare.
Resumo:
L’argomento trattato in questo elaborato riguarda la natura e le applicazioni di una nuova classe di biomateriali: i peptidi auto-assemblanti. La perdita di funzione di un organo o di un tessuto rappresenta una problematica rilevante sia sotto il profilo clinico sia per i costi di gestione. I trapianti sono infatti tra le terapie più sofisticate e onerose economicamente, complicate da altri aspetti quali una strutturale insufficienza di donatori e la necessità che i soggetti trapiantati vengano sottoposti cronicamente a regimi terapeutici immunosoppressivi che aumentano eventuali effetti collaterali. La terapia sostitutiva basata su organi artificiali è invece gravata dalla durata limitata dei dispositivi, nonchè da un non trascurabile rischio infettivo. La medicina rigenerativa, che sembra essere una soluzione adeguata per ovviare a tutte queste problematiche, è un settore emergente che combina aspetti della medicina, della biologia cellulare e molecolare, della scienza dei materiali e dell’ingegneria al fine di rigenerare, riparare o sostituire i tessuti danneggiati. In questo panorama, il ruolo dei biomateriali sta diventando sempre più importante grazie alla loro varietà e alle loro funzioni emergenti. Tra i biomateriali innovativi più promettenti troviamo i peptidi auto-assemblanti. Dopo un'introduzione sui principi dell'ingegneria tissutale, la tesi si focalizza sui peptidi auto-assemblanti e sulle loro applicazioni in campo biomedico, ponendo l'attenzione, in particolar modo, sulla realizzazione di scaffold per la rigenerazione del tessuto osseo, cardiaco, cartilagineo e nervoso, e sulla loro applicazione per il rilascio controllato di farmaci.
Resumo:
Nell’area dell’ingegneria tissutale si sta affermando una nuova tecnica che consiste nell’utilizzo di scaffold per la rigenerazione dell’apparato renale. Nella presente tesi, dopo un’introduzione fatta sulle terapie per la sostituzione renale, sono state analizzate le tecniche, le caratteristiche e presentati i risultati finora raggiunti nella decellularizzazione e ricellularizzazione di scaffold renali.
Resumo:
Ogni giorno nel mondo vengono eseguite migliaia di procedure chirurgiche per sostituire o riparare tessuti che sono stati danneggiati da malattie o traumi. L'ingegneria tissutale rappresenta una strategia alternativa che mira a rigenerare i tessuti danneggiati combinando cellule e biomateriali altamente porosi che fungano da impalcature (scaffolds). In questa tesi compilativa si presenta un approccio recentemente proposto per la rigenerazione del tessuto osseo. Saranno inizialmente descritte caratteristiche e proprietà dell'osso a livello macro e microscopico e il processo riparativo fisiologico. Si illustreranno quindi i principi dell'ingegneria tissutale, evidenziando i biomateriali utilizzabili, le cellule indicate per la rigenerazione e i rapporti funzionali tra di esse e lo scaffold che deve sostenerne la crescita. Successivamente si descriverà il concetto di ‘biomimetica’ dello scaffold e i metodi impiegati per migliorarne la funzionalità, imitando sia l'aspetto meccanico sia quello biologico della reale matrice ossea; verrà trattato infine un caso di scaffold biomimetico realizzato con nanocompositi, che appare un promettente sostitutivo dell'osso.
Resumo:
Gli obbiettivi di questo lavoro di tesi risultano i seguenti: 1) Progettare e caratterizzare una tipologia di bundle bioriassorbibile attraverso la tecnica dell’elettrofilatura, composto da una miscela di acido poli-(L)lattico (PLLA) e collagene, che cerchi di mimare le proprietà meccaniche dei fascicoli di collagene tendineo umano ed equino; 2) Individuare una metodologia di assemblaggio multiscala dei bundle che permetta la creazione di uno scaffold in grado di mimare la struttura gerarchica di un tendine completo; 3) Applicare la filosofia traslazionale alla progettazione dello scaffold al fine di poter applicare tale tecnologia sia nell’ambito della medicina umana che in quella veterinaria, lavorando nel senso della medicina unica.
Resumo:
The importance of pyrazole and lactam-based molecules in medical and pharmaceutical fields is underlined by the multitude of active ingredients on trade, such as Sildenafil or Apixaban, by Pfizer. In this work, a synthesis of an organic molecule with promising anticancer activity has been developed. This molecular scaffold is characterized by a δ-lactam-fused pyrazolic core, with a well-known biological activity and amenable of further functionalization. The synthetic strategy adopted for the obtainment of the core was based on a 1,3-dipolar cycloaddition of a nitrilimine with an α,β-unsaturated δ-lactam. Secondly, in order to give the final compound an elevated pharmacological activity, a functionalization with a double “side chain”, namely molecular fragment able to improve the interaction with particular biological receptors, was achieved. The target compound was thus obtained, with a highly convergent synthesis, and will be tested for antiproliferative activities towards different cellular lines.