973 resultados para sales force optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand forecasting is crucial in organizing and planning production, purchasing, transportation and labor force. Retail sales series belong to a special type of time series that typically contain trend and seasonal patterns, presenting challenges in developing effective forecasting models. This work compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's Information Criteria for the in-sample period was selected from all admissible models for further evaluation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show that when an automatic algorithm the overall out-of-sample forecasting performance of state space and ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to the nominal rates for both one-step and multi-step forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature tourism experienced a great expansion of its market with the appearance of different lifestyles. In this Work Project a study regarding the website direct sales of Rota Vicentina was developed. Its website shows the idea of being solely an information structure and not a purchase one, leading to a current absence of online sales. Hence, it is suggested the modification of its business model, using different instruments and channels. Some digital marketing recommendations were developed in order to boost website sales, such as a platform for online reviews, remarketing campaigns and social media activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’athérosclérose est une maladie qui cause, par l’accumulation de plaques lipidiques, le durcissement de la paroi des artères et le rétrécissement de la lumière. Ces lésions sont généralement localisées sur les segments artériels coronariens, carotidiens, aortiques, rénaux, digestifs et périphériques. En ce qui concerne l’atteinte périphérique, celle des membres inférieurs est particulièrement fréquente. En effet, la sévérité de ces lésions artérielles est souvent évaluée par le degré d’une sténose (réduction >50 % du diamètre de la lumière) en angiographie, imagerie par résonnance magnétique (IRM), tomodensitométrie ou échographie. Cependant, pour planifier une intervention chirurgicale, une représentation géométrique artérielle 3D est notamment préférable. Les méthodes d’imagerie par coupe (IRM et tomodensitométrie) sont très performantes pour générer une imagerie tridimensionnelle de bonne qualité mais leurs utilisations sont dispendieuses et invasives pour les patients. L’échographie 3D peut constituer une avenue très prometteuse en imagerie pour la localisation et la quantification des sténoses. Cette modalité d’imagerie offre des avantages distincts tels la commodité, des coûts peu élevés pour un diagnostic non invasif (sans irradiation ni agent de contraste néphrotoxique) et aussi l’option d’analyse en Doppler pour quantifier le flux sanguin. Étant donné que les robots médicaux ont déjà été utilisés avec succès en chirurgie et en orthopédie, notre équipe a conçu un nouveau système robotique d’échographie 3D pour détecter et quantifier les sténoses des membres inférieurs. Avec cette nouvelle technologie, un radiologue fait l’apprentissage manuel au robot d’un balayage échographique du vaisseau concerné. Par la suite, le robot répète à très haute précision la trajectoire apprise, contrôle simultanément le processus d’acquisition d’images échographiques à un pas d’échantillonnage constant et conserve de façon sécuritaire la force appliquée par la sonde sur la peau du patient. Par conséquent, la reconstruction d’une géométrie artérielle 3D des membres inférieurs à partir de ce système pourrait permettre une localisation et une quantification des sténoses à très grande fiabilité. L’objectif de ce projet de recherche consistait donc à valider et optimiser ce système robotisé d’imagerie échographique 3D. La fiabilité d’une géométrie reconstruite en 3D à partir d’un système référentiel robotique dépend beaucoup de la précision du positionnement et de la procédure de calibration. De ce fait, la précision pour le positionnement du bras robotique fut évaluée à travers son espace de travail avec un fantôme spécialement conçu pour simuler la configuration des artères des membres inférieurs (article 1 - chapitre 3). De plus, un fantôme de fils croisés en forme de Z a été conçu pour assurer une calibration précise du système robotique (article 2 - chapitre 4). Ces méthodes optimales ont été utilisées pour valider le système pour l’application clinique et trouver la transformation qui convertit les coordonnées de l’image échographique 2D dans le référentiel cartésien du bras robotisé. À partir de ces résultats, tout objet balayé par le système robotique peut être caractérisé pour une reconstruction 3D adéquate. Des fantômes vasculaires compatibles avec plusieurs modalités d’imagerie ont été utilisés pour simuler différentes représentations artérielles des membres inférieurs (article 2 - chapitre 4, article 3 - chapitre 5). La validation des géométries reconstruites a été effectuée à l`aide d`analyses comparatives. La précision pour localiser et quantifier les sténoses avec ce système robotisé d’imagerie échographique 3D a aussi été déterminée. Ces évaluations ont été réalisées in vivo pour percevoir le potentiel de l’utilisation d’un tel système en clinique (article 3- chapitre 5).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adenoassociated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (ΔAB/R3-R18/ΔCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (ΔAB/R3-R18/ΔCT and ΔR4-R23/ΔCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of ΔAB/R3-R18/ΔCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized ΔAB/ R3-R18/ΔCT. However, codon-optimized microdystrophin ΔR4-R23/ΔCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) in pH 6.9 phosphate buffer solution was used to investigate each step of the procedure employed to modify a screen-printed electrode (SPE). The SPE was modified with self-assembled monolayers (SAMs) of cystamine (CYS, deposited from 20 mM solution), followed by glutaraldehyde (GA, 0.3 M solution). The Trypanosoma cruzi antigen was immobilized using different deposition times. The influence of incubation time (2-18 h) of protein was also investigated. The topography of modified electrode with this protein was investigated by atomic force microscopy (AFM). Interpretation of impedance data was based on physical and chemical adsorption, and degradation of the layer at high and meddle frequencies, and charge transfer reaction involving mainly the reduction of oxygen at low frequencies. EIS studies on modified electrodes with Tc85 protein immobilized for different incubation times indicated that the optimum incubation time was 6-8 h. It was demonstrated that EIS is a good technique to evaluate the different steps and the integrity of the surface modifications, and to optimize the incubation time of protein in the development of biosensors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Performance in cross-country skiing is influenced by the skier’s ability to continuously produce propelling forces and force magnitude in relation to the net external forces. A surrogate indicator of the “power supply” in cross-country skiing would be a physiological variable that reflects an important performance-related capability, whereas the body mass itself is an indicator of the “power demand” experienced by the skier. To adequately evaluate an elite skier’s performance capability, it is essential to establish the optimal ratio between the physiological variable and body mass. The overall aim of this doctoral thesis was to investigate the importance of body-mass exponent optimization for the evaluation of performance capability in cross-country skiing. Methods In total, 83 elite cross-country skiers (56 men and 27 women) volunteered to participate in the four studies. The physiological variables of maximal oxygen uptake (V̇O2max) and oxygen uptake corresponding to a blood-lactate concentration of 4 mmol∙l-1 (V̇O2obla) were determined while treadmill roller skiing using the diagonal-stride technique; mean oxygen uptake (V̇O2dp) and upper-body power output (Ẇ) were determined during double-poling tests using a ski-ergometer. Competitive performance data for elite male skiers were collected from two 15-km classical-technique skiing competitions and a 1.25-km sprint prologue; additionally, a 2-km double-poling roller-skiing time trial using the double-poling technique was used as an indicator of upper-body performance capability among elite male and female junior skiers. Power-function modelling was used to explain the race and time-trial speeds based on the physiological variables and body mass. Results The optimal V̇O2max-to-mass ratios to explain 15-km race speed were V̇O2max divided by body mass raised to the 0.48 and 0.53 power, and these models explained 68% and 69% of the variance in mean skiing speed, respectively; moreover, the 95% confidence intervals (CI) for the body-mass exponents did not include either 0 or 1. For the modelling of race speed in the sprint prologue, body mass failed to contribute to the models based on V̇O2max, V̇O2obla, and V̇O2dp. The upper-body power output-to-body mass ratio that optimally explained time-trial speed was Ẇ ∙ m-0.57 and the model explained 63% of the variance in speed. Conclusions The results in this thesis suggest that V̇O2max divided by the square root of body mass should be used as an indicator of performance in 15-km classical-technique races among elite male skiers rather than the absolute or simple ratio-standard scaled expression. To optimally explain an elite male skier’s performance capability in sprint prologues, power-function models based on oxygen-uptake variables expressed absolutely are recommended. Moreover, to evaluate elite junior skiers’ performance capabilities in 2-km double-poling roller-skiing time trials, it is recommended that Ẇ divided by the square root of body mass should be used rather than absolute or simple ratio-standard scaled expression of power output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUÇÃO: a Ortodontia passa, atualmente, por um momento de importantes inovações e grande efervescência criativa. Somente para citar algumas mudanças introduzidas ou aprimoradas nos últimos anos, nós podemos relembrar a popularização dos braquetes autoligáveis e o surgimento da ancoragem absoluta com a utilização de implantes ortodônticos. No final da década de 1990, a adoção dos mini-implantes como ancoragem permitiu uma mudança de paradigma que tem influenciado até mesmo a forma de pensar a mecânica ortodôntica. A imbricação das especialidades de Ortodontia e Implantodontia, cujo início se deu com os preparos ortodônticos para posterior inserção de implantes protéticos, floresceu com o uso de implantes palatinos e, posteriormente, com a introdução de mini-implantes. O aprimoramento da técnica de inserção de mini-implantes com a introdução de parafusos autoperfurantes tem permitido, inclusive, o requinte do ortodontista concentrar em suas mãos o planejamento e a colocação dessa preciosa peça de ancoragem. Levando em consideração a versatilidade de posicionamento desses pequenos parafusos, foi desenvolvido um conceito que possibilita a construção de linhas de ação de força que buscam otimizar o planejamento e a previsibilidade da movimentação ortodôntica. OBJETIVO: apresentar alguns resultados clínicos de tratamentos conduzidos com o uso de um sistema de tratamento ortodôntico, o Centrex System, que aproxima a linha de ação da força do centro de resistência das unidades a serem movimentadas. O caminho trilhado até o seu desenvolvimento, cuja teoria mecânica foi apresentada anteriormente nesse periódico, será detalhado para uma melhor compreensão de seu funcionamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the problem of a spacecraft bi-impulsive transfer between two given non coplanar elliptical orbits, with minimum fuel consumption, is solved considering a non-Keplerian force field (the perturbing forces include Earth gravity harmonics and atmospheric drag). The problem is transformed in the Two Point Boundary Value Problem. It is developed and implemented a new algorithm, that uses the analytical expressions developed here. A dynamics that considered a Keplerian force field was used to produce an initial guess to solve the Two Point Boundary Value Problem. Several simulations were performed to observe the spacecraft orbital behaviour by different kind of perturbations and constraints, on a fuel consumption optimization point of view. (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.