667 resultados para representation and learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the standard real business cycle model with lump-sum taxes, we analyze the impact of fiscal policy when agents form expectations using adaptive learning rather than rational expectations (RE). The output multipliers for government purchases are significantly higher under learning, and fall within empirical bounds reported in the literature (in sharp contrast to the implausibly low values under RE). Effectiveness of fiscal policy is demonstrated during times of economic stress like the recent Great Recession. Finally it is shown how learning can lead to dynamics empirically documented during episodes of 'fiscal consolidations.'

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we elicit agents’ prior information set regarding a public good, exogenously give information treatments to survey respondents and subsequently elicit willingness to pay for the good and posterior information sets. The design of this field experiment allows us to perform theoretically motivated hypothesis testing between different updating rules: non-informative updating, Bayesian updating, and incomplete updating. We find causal evidence that agents imperfectly update their information sets. We also field causal evidence that the amount of additional information provided to subjects relative to their pre-existing information levels can affect stated WTP in ways consistent overload from too much learning. This result raises important (though familiar) issues for the use of stated preference methods in policy analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies optimal monetary policy in a framework that explicitly accounts for policymakers' uncertainty about the channels of transmission of oil prices into the economy. More specfically, I examine the robust response to the real price of oil that US monetary authorities would have been recommended to implement in the period 1970 2009; had they used the approach proposed by Cogley and Sargent (2005b) to incorporate model uncertainty and learning into policy decisions. In this context, I investigate the extent to which regulator' changing beliefs over different models of the economy play a role in the policy selection process. The main conclusion of this work is that, in the specific environment under analysis, one of the underlying models dominates the optimal interest rate response to oil prices. This result persists even when alternative assumptions on the model's priors change the pattern of the relative posterior probabilities, and can thus be attributed to the presence of model uncertainty itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overarching purpose of these guidelines is to ensure the safety and promote the protection of patients, staff and visitors by ensuring that dangerous items or hazardous substances are not brought into the in-patient setting, including illicit substances, prescribed / over the counter medications, dangerous items and alcohol or any other hazardous or potentially hazardous item or substance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OER-based learning has the potential to overcome many shortcomings and problems of traditional education. It is not hampered by IP restrictions; can depend on collaborative, cumulative, iterative refinement of resources; and the digital form provides unprecedented flexibility with respect to configuration and delivery. The OER community is a progressive group of educators and learners with decades of learning research to draw from, who know that we must prepare learners for an evolving and diverse reality. Despite this OER tends to replicate the unsuccessful characteristics of traditional education. To remedy this we may need to remember the importance of imperfection, mistakes, problems, disagreement, and the incomplete for engaged learning, and relinquish our notions of perfection, acknowledging that learners learn differently and we need diverse learners. We must stretch our perceptions of quality and provide mechanisms for engaging the incredible pool of educators globally to fulfill the promise of inclusive education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents preliminary findings from a research study conducted by the Institute for the Study of Knowledge Management in Education on the role of open educational resources (OER) in transforming pedagogy. Based on a study of art and humanities teachers participating in an OER training network, the study reveals how exposure to OER resources and tools support collaboration among teachers, as well as new conversations about teaching practices. These findings have implications for engaging teachers in adopting new OER use practices, and for how OER can be integrated as a model for innovation in teaching and in resource development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The explosive growth of Internet during the last years has been reflected in the ever-increasing amount of the diversity and heterogeneity of user preferences, types and features of devices and access networks. Usually the heterogeneity in the context of the users which request Web contents is not taken into account by the servers that deliver them implying that these contents will not always suit their needs. In the particular case of e-learning platforms this issue is especially critical due to the fact that it puts at stake the knowledge acquired by their users. In the following paper we present a system that aims to provide the dotLRN e-learning platform with the capability to adapt to its users context. By integrating dotLRN with a multi-agent hypermedia system, online courses being undertaken by students as well as their learning environment are adapted in real time