945 resultados para radio galaxy,spectral ageing,synchrotron radiation,AGN,radio emission
Resumo:
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The discovery of scaling relations between the mass of the SMBH and some key physical properties of the host galaxy suggests that the growth of the SMBH and that of the galaxy are coupled, with the AGN activity and the star-formation (SF) processes influencing each other. Although the mechanism of this co-evolution are still a matter of debate, all scenarios agree that a key phase of the co-evolution is represented by the obscured accretion phase. This phase is of the co-evolution is the least studied, mostly due to the challenge in detecting and recognizing such obscured AGN. My thesis aims at investigating the AGN-galaxy co-evolution paradigm by identifying and studying AGN in the obscured accretion phase. The study of obscured AGN is key for our understanding of the feedback processes and of the mutual influence of the SF and the AGN activity. Moreover, these obscured and elusive AGN are needed to explain the X-ray background spectrum and to reconcile the measurements and the theoretical prediction of the BH accretion rate density. In this thesis, we firstly investigate the synergies between IR and X-ray missions in detecting and characterizing AGN, with a particular focus on the most obscured ones. We exploited UV/optical emission lines to select high-redshift obscured AGN at the cosmic noon, where the highest SFR density and BH accretion rate density are expected. We provide X-ray spectral analysis and UV-to-far-IR SED-fitting. We show that our samples host a significant fraction of very obscured sources; many of these are highly accreting. Finally, we performe a thoughtful investigation of a galaxy at z~5 with unusual and peculiar features, that lead us to identify a second extremely young population of stars and hidden AGN activity.
Resumo:
Context. X-ray data analysis have found that fairly complex structures at cluster centres are more common than expected. Many of these structures have similar morphologies, which exhibit spiral-like substructure. Aims. It is not yet well known how these structures are formed or maintained. Understanding the origin of these spiral-like features at the centre of some clusters is the major motivation behind this work. Methods. We analyse deep Chandra observations of 15 nearby galaxy clusters ( 0.01 < z < 0.06), and use X-ray temperature and substructure maps to detect small features at the cores of the clusters. Results. We detect spiral-like features at the centre of 7 clusters: A85, A426, A496, Hydra A cluster, Centaurus, Ophiuchus, and A4059. These patterns are similar to those found in numerical hydrodynamic simulations of cluster mergers with non-zero impact parameter. In some clusters of our sample, a strong radio source also occupies the inner region of the cluster, which indicates a possible connection between the two. Our investigation implies that these spiral-like structures may be caused by off-axis minor mergers. Since these features occur in regions of high density, they may confine radio emission from the central galaxy producing, in some cases, unusual radio morphology.
Resumo:
Over the last decade, X-ray observations have revealed the existence of several classes of isolated neutron stars (INSs) which are radio-quiet or exhibit radio emission with properties much at variance with those of ordinary radio pulsars. The identification of new sources is crucial in order to understand the relations among the different classes and to compare observational constraints with theoretical expectations. A recent analysis of the 2XMMp catalogue provided fewer than 30 new thermally emitting INS candidates. Among these, the source 2XMM J104608.7-594306 appears particularly interesting because of the softness of its X-ray spectrum, kT = 117 +/- 14 eV and N(H) = (3.5 +/- 1.1) x 10(21) cm(-2) (3 sigma), and of the present upper limits in the optical, m(B) greater than or similar to 26, m(V) greater than or similar to 25.5 and m(R) greater than or similar to 25 (98.76% confidence level), which imply a logarithmic X-ray-to-optical flux ratio log(F(X)/F(V)) greater than or similar to 3.1, corrected for absorption. We present the X-ray and optical properties of 2XMM J104608.7-594306 and discuss its nature in the light of two possible scenarios invoked to explain the X-ray thermal emission from INSs: the release of residual heat in a cooling neutron star, as in the seven radio-quiet ROSAT-discovered INSs, and accretion from the interstellar medium. We find that the present observational picture of 2XMM J104608.7-594306 is consistent with a distant cooling INS with properties in agreement with the most up-to-date expectations of population synthesis models: it is fainter, hotter and more absorbed than the seven ROSAT sources and possibly located in the Carina Nebula, a region likely to harbour unidentified cooling neutron stars. The accretion scenario, although not entirely ruled out by observations, would require a very slow (similar to 10 km s(-1)) INS accreting at the Bondi-Hoyle rate.
Resumo:
The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
We report the discovery, from the H I Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen, which we believe to be extragalactic. The H I mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10(7) M-circle dot, using an estimated distance of similar to 3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits [mu(B) similar to 27 mag arcsec(-2)]. HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, H I 1225 + 01 (the Virgo H. I cloud) and has a size of at least 15 kpc. The mean velocity dispersion measured with the Australia Telescope Compact Array (ATCA) is only 4 km s(-1) for the main component and, because of the weak or nonexistent star formation, possibly reflects the thermal line width (T < 2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 1019 cm(-2), which is estimated to be a factor of 2 below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognized class of compact high-velocity clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud-Galaxy system at perigalacticon similar to 2 x 10(8) yr ago.
Resumo:
The H I Parkes All-Sky Survey (HIPASS) is a blind 21 cm survey for extragalactic neutral hydrogen, covering the whole southern sky. The HIPASS Bright Galaxy Catalog (BGC) is a subset of HIPASS and contains the 1000 H I brightest (peak flux density) galaxies. Here we present the 138 HIPASS BGC galaxies that had no redshift measured prior to the Parkes multibeam H I surveys. Of the 138 galaxies, 87 are newly cataloged. Newly cataloged is defined as having no optical ( or infrared) counterpart in the NASA/IPAC Extragalactic Database. Using the Digitized Sky Survey, we identify optical counterparts for almost half of the newly cataloged galaxies, which are typically of irregular or Magellanic morphological type. Several H I sources appear to be associated with compact groups or pairs of galaxies rather than an individual galaxy. The majority ( 57) of the newly cataloged galaxies lie within 10degrees of the Galactic plane and are missing from optical surveys as a result of confusion with stars or dust extinction. This sample also includes newly cataloged galaxies first discovered by Henning et al. in the H I shallow survey of the zone of avoidance. The other 30 newly cataloged galaxies escaped detection because of their low surface brightness or optical compactness. Only one of these, HIPASS J0546-68, has no obvious optical counterpart, as it is obscured by the Large Magellanic Cloud. We find that the newly cataloged galaxies with -b->10degrees are generally lower in H I mass and narrower in velocity width compared with the total HIPASS BGC. In contrast, newly cataloged galaxies behind the Milky Way are found to be statistically similar to the entire HIPASS BGC. In addition to these galaxies, the HIPASS BGC contains four previously unknown H I clouds.
Resumo:
Synchrotron radiation X-ray tomographic microscopy is a nondestructive method providing ultra-high-resolution 3D digital images of rock microstructures. We describe this method and, to demonstrate its wide applicability, we present 3D images of very different rock types: Berea sandstone, Fontainebleau sandstone, dolomite, calcitic dolomite, and three-phase magmatic glasses. For some samples, full and partial saturation scenarios are considered using oil, water, and air. The rock images precisely reveal the 3D rock microstructure, the pore space morphology, and the interfaces between fluids saturating the same pore. We provide the raw image data sets as online supplementary material, along with laboratory data describing the rock properties. By making these data sets available to other research groups, we aim to stimulate work based on digital rock images of high quality and high resolution. We also discuss and suggest possible applications and research directions that can be pursued on the basis of our data.
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.
Resumo:
We here investigate the dispersion properties of radiation in the SS433 relativistic jets. We assume that the jet is composed of cold electron-proton plasma immersed in a predominantly parallel magnetic field to the jet axis. We find that for the mildly relativistic source SS433 (for which
Resumo:
Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presumably soluble KFe(+3)[Fe(2+)(CN)(6)] structure of electrochemically synthesized hexacyanoferrate materials (Prussian Blue) containing K(+) ions was determined for the first time in this study. Prior to drawing conclusions from a structural analysis, the main goal was to make a precise analysis of the inferred soluble structure, that is, KFe(+3) [Fe(2+)(CN)(6)], which is frequently referred to in the literature as the final stable electrochemically synthesized structure. Indeed, a successful X-ray powder diffraction experiment using X-ray synchrotron radiation was made of a powder placed in a 0.5 mm diameter borosilicate glass capillary, which was obtained by removing sixty 90 nm thin films from the substrates on which they were prepared. However, the conclusions were highly unexpected, because the structure showed that the [Fe(CN)61 group was absent from similar to 25% of the structure, invalidating the previously presumed soluble KFe(+3)[Fe(2+)(CN)(6)] structure. This information led to the conclusion that the real structure of Prussian Blue electrochemically synthesized after the stabilization process is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O containing a certain fraction of inserted K(+) ions. In fact, based on an electrogravimetric analysis (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 and 19352) complemented by the Fourier maps. it is possible to affirm that the K(+) was part of the water crystalline substructure. Therefore, the interplay mechanism was reexamined considering more precisely the role played by the water crystalline substructure and the K+ alkali metal ion. As a final conclusion, it is proposed that the most precise way to represent the structure of electrochemically synthesized and stabilized hexacyanoferrate materials is Fe(4)(3+) Fe(2+)(CN)(6)](3)center dot[K(h)(+)center dot OH(h)(-)center dot mH(2)O]. The importance of this result is that the widespread use of the terms soluble and insoluble in the electrochemical literature could be reconsidered. Indeed, only one type of structure is insoluble, and that is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O hence, the use of the terms soluble and insoluble is inappropriate from a structural point of view. The result of the presence of the [Fe(CN)61 vacancy a, roup is that the water Substructure cannot be ignored in the ionic interplay mechanism which controls the intercalation and redox process, as was previously confirmed by electrogravimetric analyses (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 Garcia-Jareno et al., Electrochim. Acta 1998, 44, 395: Kulesza, Inorg. Chem. 1990, 29, 2395).