993 resultados para quantitative proteomics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. This is a pilot study of quantitative electro-encephalographic (QEEG) comodulation analysis, which is used to assist in identifying regional brain differences in those people suffering from chronic fatigue syndrome (CFS) compared to a normative database. The QEEG comodulation analysis examines spatial-temporal cross-correlation of spectral estimates in the resting dominant frequency band. A pattern shown by Sterman and Kaiser (2001) and referred to as the anterior posterior dissociation (APD) discloses a significant reduction in shared functional modulation between frontal and centro-parietal areas of the cortex. This research attempts to examine whether this pattern is evident in CFS. Method. Eleven adult participants, diagnosed by a physician as having CFS, were involved in QEEG data collection. Nineteen-channel cap recordings were made in five conditions: eyes-closed baseline, eyes-open, reading task one, math computations task two, and a second eyes-closed baseline. Results. Four of the 11 participants showed an anterior posterior dissociation pattern for the eyes-closed resting dominant frequency. However, seven of the 11 participants did not show this pattern. Examination of the mean 8-12 Hz amplitudes across three cortical regions (frontal, central and parietal) indicated a trend of higher overall alpha levels in the parietal region in CFS patients who showed the APD pattern compared to those who did not have this pattern. All patients showing the pattern were free of medication, while 71% of those absent of the pattern were using antidepressant medications. Conclusions. Although the sample is small, it is suggested that this method of evaluating the disorder holds promise. The fact that this pattern was not consistently represented in the CFS sample could be explained by the possibility of subtypes of CFS, or perhaps co-morbid conditions. Further, the use of antidepressant medications may mask the pattern by altering the temporal characteristics of the EEG. The results of this pilot study indicate that further research is warranted to verify that the pattern holds across the wider population of CFS sufferers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dr. Young-Ki Paik directs the Yonsei Proteome Research Center in Seoul, Korea and was elected as the President of the Human Proteome Organization (HUPO) in 2009. In the December 2009 issue of the Current Pharmacogenomics and Personalized Medicine (CPPM), Dr. Paik explains the new field of pharmacoproteomics and the approaching wave of “proteomics diagnostics” in relation to personalized medicine, HUPO’s role in advancing proteomics technology applications, the HUPO Proteomics Standards Initiative, and the future impact of proteomics on medicine, science, and society. Additionally, he comments that (1) there is a need for launching a Gene-Centric Human Proteome Project (GCHPP) through which all representative proteins encoded by the genes can be identified and quantified in a specific cell and tissue and, (2) that the innovation frameworks within the diagnostics industry hitherto borrowed from the genetics age may require reevaluation in the case of proteomics, in order to facilitate the uptake of pharmacoproteomics innovations. He stresses the importance of biological/clinical plausibility driving the evolution of biotechnologies such as proteomics,instead of an isolated singular focus on the technology per se. Dr. Paik earned his Ph.D. in biochemistry from the University of Missouri-Columbia and carried out postdoctoral work at the Gladstone Foundation Laboratories of Cardiovascular Disease, University of California at San Francisco. In 2005, his research team at Yonsei University first identified and characterized the chemical structure of C. elegans dauer pheromone (daumone) which controls the aging process of this nematode. He is interviewed by a multidisciplinary team specializing in knowledge translation, technology regulation, health systems governance, and innovation analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence and concentrations of Campylobacter jejuni, Salmonella spp. and enterohaemorrhagic E. coli (EHEC) were investigated in surface waters in Brisbane, Australia using quantitative PCR (qPCR) based methodologies. Water samples were collected from Brisbane City Botanic Gardens (CBG) Pond, and two urban tidal creeks (i.e., Oxley Creek and Blunder Creek). Of the 32 water samples collected, 8 (25%), 1 (3%), 9 (28%), 14 (44%), and 15 (47%) were positive for C. jejuni mapA, Salmonella invA, EHEC O157 LPS, EHEC VT1, and EHEC VT2 genes, respectively. The presence/absence of the potential pathogens did not correlate with either E. coli or enterococci concentrations as determined by binary logistic regression. In conclusion, the high prevalence, and concentrations of potential zoonotic pathogens along with the concentrations of one or more fecal indicators in surface water samples indicate a poor level of microbial quality of surface water, and could represent a significant health risk to users. The results from the current study would provide valuable information to the water quality managers in terms of minimizing the risk from pathogens in surface waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

a presentation about immersive visualised simulation systems, image analysis and GPGPU Techonology