676 resultados para purine nucleoside phosphorylase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73 +/- 12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-gamma secretion, ratios of IFN-gamma/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNF alpha/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-gamma/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The protozoan Trypanosoma cruzi is the causative agent of Chagas disease. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed. There is a clear necessity to develop new drugs and strategies for the control and treatment of Chagas disease. Recent papers have suggested the ecto-nucleotidases (from CD39 family) from pathogenic agents as important virulence factors. In this study we evaluated the influence of Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) activity on infectivity and virulence of T. cruzi using both in vivo and in vitro models. Methodology/Principal Findings: We followed Ecto-NTPDase activities of Y strain infective forms (trypomastigotes) obtained during sequential sub-cultivation in mammalian cells. ATPase/ ADPase activity ratios of cell-derived trypomastigotes decreased 3- to 6-fold and infectivity was substantially reduced during sequential sub-cultivation. Surprisingly, at third to fourth passages most of the cell-derived trypomastigotes could not penetrate mammalian cells and had differentiated into amastigote-like parasites that exhibited 3- to 4-fold lower levels of Ecto-NTPDase activities. To evidence the participation of T. cruzi Ecto-NTPDase1 in the infective process, we evaluated the effect of known Ecto-ATPDase inhibitors (ARL 67156, Gadolinium and Suramin), or anti-NTPDase-1 polyclonal antiserum on ATPase and ADPase hydrolytic activities in recombinant T. cruzi NTPDase-1 and in live trypomastigotes. All tests showed a partial inhibition of Ecto-ATPDase activities and a marked inhibition of trypomastigotes infectivity. Mice infections with Ecto-NTPDase-inhibited trypomastigotes produced lower levels of parasitemia and higher host survival than with non-inhibited control parasites. Conclusions/Significance: Our results suggest that Ecto-ATPDases act as facilitators of infection and virulence in vitro and in vivo and emerge as target candidates in chemotherapy of Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinases exhibit various degrees of substrate specificity. The large number of different protein kinases in the eukaryotic proteomes makes it impractical to determine the specificity of each enzyme experimentally. To test if it were possible to discriminate potential substrates from non-substrates by simple computational techniques, we analysed the binding enthalpies of modelled enzyme-substrate complexes and attempted to correlate it with experimental enzyme kinetics measurements. The crystal structures of phosphorylase kinase and cAMP-dependent protein kinase were used to generate models of the enzyme with a series of known peptide substrates and non-substrates, and the approximate enthalpy of binding assessed following energy minimization. We show that the computed enthalpies do not correlate closely with kinetic measurements, but the method can distinguish good substrates from weak substrates and non-substrates. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it was evaluated the total antioxidant capacity (TAC) of beverages using an electrochemical biosensor. The biosensor consisted on the purine base (guanine or adenine) electro-immobilization on a glassy carbon electrode surface (GCE). Purine base damage was induced by the hydroxyl radical generated by Fenton-type reaction. Five antioxidants were applied to counteract the deleterious effects of the hydroxyl radical. The antioxidants used were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants have the ability to scavenger the hydroxyl radical and protect the guanine and adenine immobilized on the GCE surface. The interaction carried out between the purinebase immobilized and the free radical in the absence and presence of antioxidants was evaluated by means of changes in the guanine and adenine anodic peak obtained by square wave voltammetry (SWV). The results demonstrated that the purine-biosensors are suitable for rapid assessment of TAC in beverages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the effect of 8-Bromoguanosine, an immunostimulatory compound, on the cytotoxicity of macrophages against Leishmania amazonensis in an in vitro system. The results showed that macrophages treated with 8-Bromoguanosine before or after infection are capable to reduce parasite load, as monitored by the number of amastigotes per macrophage and the percentage of infected cells (i.e. phagocytic index). Since 8-Bromoguanosine was not directly toxic to the promastigotes, it was concluded that the ribonucleoside induced macrophage activation. Presumably, 8-Bromoguanosine primed macrophages by inducing interferon alpha and beta which ultimately led to L. amazonensis amastigote killing. The results suggest that guanine ribonucleosides may be useful to treat infections with intracellular pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Pilocytic astrocytomas (PAs) are the most frequent astrocytomas in children and adolescents. Methilthioadenosine phosphorylase(MTAP) is a tumor-suppressor gene, the loss of expression of which is associated with a poor prognosis and better response to specific chemotherapy in leukemia and non-small-cell lung cancer. The expression of MTAP in brain tumors remains largely unknown and its biological role in PA is still unexplored. Our aims were to describe the immunohistochemical MTAP expression in a series of PAs and relate it to the clinicopathological features of the patients. METHODS We assessed MTAP expression on immunohistochemistry in 69 pediatric and adult patients with PA in a tissue microarray platform. RESULTS Retained expression of MTAP was seen in >85% of the tumors compared to in the nonneoplastic adjacent tissue. Only 3 supratentorial tumors showed a complete loss of MTAP expression. No significant association with clinicopathological features or overall survival of the patients was found. CONCLUSIONS MTAP expression is retained in PAs and is not an outcome predictor for these tumors. Nevertheless, a subset of patients with PAs exhibiting a loss of MTAP could potentially benefit from treatment with specific chemotherapy, especially when lesions are recurrent or surgical resection is not recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las Enfermedades de Atesoramiento de Glucógeno (EAGs) también llamadas Glucogenosis comprenden un grupo de entidades causadas por una deficiencia enzimática específica relacionada con la vía de síntesis o degradación de esta macromolécula. La heterogeneidad fenotípica de los pacientes afectados dificulta la identificación de las diferentes variantes de EAG y por ende la correcta definición nosológica. En el Centro de Estudio de las Metabolopatías Congénitas, CEMECO, se fueron definiendo los diferentes tipos de Glucogenosis a través de una estrategia multidisciplinaria que integra distintos niveles de investigación clínica y complementaria, laboratorio metabólico especializado, enzimático, histomorfológico y de análisis molecular. Sin embargo, en algunos enfermos, entre los que se encuentran aquellos con defectos en el sistema de la fosforilasa hepática (EAG-VI y EAG-IX), la exacta definición nosológica aún no está resulta. La EAG-VI se refiere a un defecto en la fosforilasa hepática, enzima codificada por el gen PYGL, mientras que la EAG-IX es causada por un defecto genético en una de las subunidades de la fosforilasa b quinasa hepática codicadas por los genes PHKA2, PHKB y PHKG2, respectivamente. El objetivo del presente trabajo es propender a la definición nosológica de pacientes con defectos en el sistema de la fosforilasa mediante una estrategia de análisis molecular investigando los genes PYGL, PHKA2, PHKB y PHKG2. Los pacientes incluidos en este estudio deberán ser compatibles de padecer una EAG-VI o EAG-IX sobre la base de síntomas clínicos y hallazgos bioquímicos. La metodología incluirá la determinación de la enzima fosforilasa b quinasa en glóbulos rojos y dentro del análisis molecular la extracción de DNA genómico a partir de sangre entera para la amplificación por PCR de los exones más las uniones exon/intron de los genes PHKG2 y PYGL y la extracción de RNA total y obtención de cDNA para posterior amplificación de los cDNA PHKA2 y PHKB. Todos los fragmentos amplificados serán sometidos a análisis de secuencia de nucleótidos. Resultados esperados. Este trabajo, primero en Argentina, permitirá establecer las bases moleculares de los defectos del sistema de la fosforilasa hepática (EAG-VI y EAG-IX). El poder lograr este nivel de investigación traerá aparejado, una oferta integrativa en el vasto capítulo de las glucogenosis hepáticas, con extraordinaria significación en la práctica asistencial para el manejo, pronóstico y correspondiente asesoramiento genético. Hepatic glycogen storage diseases (GSDs) are a group of disorders produced by a deficiency in a specific protein involved in the metabolism of glycogen causing different types of GSDs. Phenotypic heterogeneity of affected patients difficult to identify the different GSD variants and therefore the correct definition of the disease. In the “Centro de Estudio de las Metabolopatías Congénitas”, CEMECO, were defined the different GSD types by a protocol which included complex gradual levels of clinical, biochemical, enzymatic and morphological investigation. However, in some patients, like those one with defects in the hepatic phosphorylase system (GSD-VI and GSD-IX) the exact definition of the disease has not yet been resolved. The GSD-VI is produced by a defect in the PYGL gen that encode the liver phosphorylase, while the GSD-IX is caused by a genetic defect in one of the Phosphorylase b kinase subunits, encoded by the PHKA2, PHKB and PHKG2 genes, respectively. The aim of the present study is to define the phosphorylase system defects in argentinian patients through a molecular strategy that involve the investigation of PYGL, PHKA2, PHKB and PHKG2 genes. Patients included in the present study must be compatible with a GSD-VI or GSD-IX on the bases of clinical symptoms and biochemical findings. The phosphorylase b kinase activity will be assay on in blood red cells. The molecular study will include genomic DNA extraction for the amplification of PHKG2 and PYGL genes and the total RNA extraction for amplification of the PHKA2 and PHKB cDNA by PCR. All PCR-amplified fragments will be subjected to direct nucleotide sequencing. This work, first in Argentina, will make possible to establish the molecular basis of the defects on the hepatic phosphorylase system (GSD-VI and GSD IX). To achieve this level of research will entail advance in the study of the hepatic glycogen storage disease, with extraordinary significance in the treatment, prognosis and the genetic counselling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En els darrers 30 anys, els anàlegs de nucleòsids han estat una part essencial de la teràpia antiviral. Més recentment, els anàlegs carbocíclics de nucleòsids s'han convertit en importants objectius pel desenvolupament de nous agents terapèutics antivirals i antitumorals, en tant que l'absència de l'enllaç N-glicosídic els confereix una major estabilitat davant l'acció de les fosforilases. Per altra banda, s'ha descrit que alguns nucleòsids de configuració L presenten, en alguns casos, una bona activitat antiviral, una major estabilitat metabòlica i una toxicitat inferior a la dels seus homòlegs de configuració natural. El present treball planteja la síntesi estereoselectiva de derivats ciclobutènics de L-nucleòsids com a agents terapèutics, susceptibles de presentar una major activitat antiviral i una menor toxicitat que els agents actuals. Per assolir aquest objectiu, s'ha construït l'anell ciclobutènic mitjançant una reacció de fotocicloaddició [2+2]. Al mateix temps, s'ha desenvolupat un estudi de la influència del dissolvent en la reacció de fotocicloaddició [2+2] d'enones a alquens halogenats. A més, s'han estudiat diverses condicions de treball per dur a terme la reacció de deshalogenació dels derivats clorats preparats amb la metodologia anterior, utilitzant Zn com a reductor i amb un sistema d'escalfament per microones com a substituent dels mètodes d'escalfament convencionals. Aquest estudi ha permès disminuir notablement el temps d'aquesta reacció, passant de 7 hores a 20 minuts. Les condicions òptimes d'ambdues reaccions determinades amb aquests estudis han permès preparar l'intermedi clau per a la introducció de les bases nitrogenades, essent aquest un potencial precursor dels anàlegs ciclobutènics de nucleòsids, així com sintetitzar el primer producte de la ruta sintètica dissenyada que presenta la base nitrogenada a la seva estructura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alliance evolutions, i.e. ruptures and resolutions over the course of psychotherapy, have been shown to be important descriptive features in different forms of psychotherapy, and in particular in psychodynamic psychotherapy. This case study of a client presenting elements of adjustment disorder undergoing short-term dynamic psychotherapy is drawn from a systematic naturalistic study and aims at illustrating, on a session-by-session-level, the processes of alliance ruptures and resolutions, by comparing both the client's and the therapist's perspectives. Method: Two episodes of alliance evolution were more fully studied, in relation to the evolution of transference, as well as the client's defensive functioning and core conflictual theme. These concepts were measured by means of valid, reliable observer-rater methods, based on session transcripts: the Defense Mechanisms Rating Scales (DMRS) for defensive functioning and the Core Conflictual Relationship Theme (CCRT) for the conflicts. Alliance was measured after each session using the Helping Alliance questionnaire (HAq-II). Results: The results indicated that these episodes of alliance rupture and resolutions may be understood as key moments of the whole therapeutic process reflecting the client's main relationship stakes. Illustrations are provided based on the client's in-session processes and related to the alliance development over the course of the entire therapy.