948 resultados para powders-chemical preparation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pure Er:YAB (Er:YAl(3)(BO(3))(4)) nanometer-sized crystalline powder was produced from low cost chemical route, the polymeric precursor method. The initial homogeneous solutions were heat treated from 200 to 700A degrees C under oxygen atmosphere and the unique crystalline phase was synthesized at around 1150A degrees C. The thermal treatments and the initial stoichiometry play a very important role on the Er:YAB preparation. The thermal events of amorphous precursor resins and the crystallization process up to phase formation were investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study proposes to synthesize (1-x)PMN-xPT powders, where 0.10 < x < 0.45, using the T-modified columbite route. This methodology consists in the preparation of the MNT columbite precursor via the polymeric precursor method, followed by the solid state reaction with PbO to get the PMN-PT powders. It was verified that from 15 mol% of Ti, the MNT presents the coexistence of two main phases with different crystal symmetry: Rutile and Columbite. However, the synthesis of (1-x)PMN-xPT powders is not affected by this event. A detailed study of structural effects in MNT and PMN-PT powders as function of Ti content was made using the Rietveld method. It was also demonstrated that powders possess high chemical and microstructural homogeneity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to compare the fluoride-releasing and mechanical properties of an experimental luting glass ionomer cement, which has a modified composition and a commercial luting cement. The experimental powder was obtained by sol-gel process and then, it was used to prepare the experimental cements. The properties of cement pastes, such as setting time and working time, microhardness and diametral tensile strength were determined. Fluoride release from GICs was evaluated at time intervals of 1, 7, 14, 21 and 28 days in deionized water. Atomic force microscopy (AFM) analyses showed that the surface of the experimental cements is more homogeneous than commercial GICs. The mechanical properties and the measure of liberation of fluoride of the two cements were influenced by ratio powder:liquid and chemical composition of the precursor powders. Experimental cements released less fluoride than commercial cements. However, this liberation was more constant during the analyzed period. Thus, the results obtained in this study indicated that the composition of the experimental powder modified by the niobium can lead the formation of the polysalt matrix with good mechanical properties. In other words, we can say that experimental powder offered considerable promise for exploitation in dental field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strontium zirconate (SrZrO3) powders have been synthesized by the polymeric precursor method after heat treatment at different temperatures for 2 h in oxygen atmosphere. The decomposition of precursor powder was followed by thermogravimetric analysis, X-ray diffraction (XRD) and Fourier transform Raman (FT-Raman). The UV-vis absorption spectroscopy measurements suggested the presence of intermediary energy levels in the band gap of structurally disordered powders. XRD, Rietveld refinement and FT-Raman revealed that the powders are free of secondary phases and crystallizes in the orthorhombic structure. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents and discusses some of the results of the effects of processing on rare earth-doped nanosize SnO2. Several relevant factors that may influence the characteristics of the final product are studied. The influence of two preparation routes and two heat-treatment conditions on the incorporation of dopants is investigated. The route whereby a soluble salt is used as the dopant source is found to provide the highest degree of dopant incorporation, even under the least favorable heat-treatment conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline BaWO4 and PbWO4 thin films having a tetragonal scheelite structure were prepared at different temperatures. Soluble precursors such as barium carbonate, lead acetate trihydrate and tungstic acid, as starting materials, were mixed in aqueous solution. The thin films were deposited on silicon, platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and specular reflectance infrared Fourier transform spectroscopy, respectively. Nucleation stages and surface morphology evolution of thin films on silicon substrates have been studied by atomic force microscopy. XRD characterization of these films showed that BaWO4 and PbWO4 phase crystallize at 500 degreesC from an inorganic amorphous phase. FTIR spectra revealed the complete decomposition of the organic ligands at 500 degreesC and the appearance of two sharp and intense bands between 1000 and 600 cm(-1) assigned to vibrations of the antisymmetric stretches resulting from the high crystallinity of both thin films. The optical properties were also studied. It was found that BaWO4 and PbWO4 thin films have Eg = 5.78 eV and 4.20 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of BaWO4 and PbWO4 thin films. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanosized and highly reactive magnesium mobate (MgNb2O6) powders were successfully synthesized by a new wet-chemical method by means of the dissolution of Nb2O5 center dot 5H(2)O and in a solution of oxalic acid followed by the addition of stoichiometric amounts of magnesium carbonate. The Nb-Mg-oxalic acid solution was evaporated resulting in a dry and amorphous powder that was calcined in the temperature range from 200 to 900 degrees C for 2 h. The crystallization process from the amorphous state to the crystalline MgNb2O6 was followed by thermal analysis. The calcined powders characterized by FT-Raman spectroscopy, X-ray diffraction (XRD) and their morphology examined by high resolution scanning electron microscopy (HR-SEM). Pure MgNb2O6, free from the second phases and obtained at 800 degrees C was confirmed by a combined analysis using XRD and FT-Raman. The average diameter of the particles was calculated from the HR-SEM image as 70 urn approximately. This technique allows a better mixing of the constituent elements and thus a better reactivity of the mixture to obtain pre-reaction products with high purity at lower temperatures and reducing cost. It can offer a great advantage in the PMN-PT formation with respect to the solid-state synthesis. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultra-fine powders of Na1-xLixNbO3 (x=0; 0.06; 0.09; 0.12) were synthesized by the Polymeric Precursors Method. Such powders had their orthorhombic structures determined by X-ray diffraction and their surface area determined by BET isotherms (less than 10 m(2) g(-1)). Densification was followed by dilatometric study. The powders, calcined at 700 degrees C for 5 h, were sintered at 1290 degrees C during 2 h under ambient atmosphere with no application of extra pressure. The samples with relative densities higher than 95% were analyzed by impedance spectroscopy at room temperature, under a signal amplitude of 1 V-rms. Dielectric constants of about 180 and dielectric loss factor of about 0.03 were measured showing small dependence with frequency. The electrical properties were similar to those obtained for samples sintered by hot pressing. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lead zirconate titanate, Pb(Zr0.3Ti0.7)O-3 (PZT) thin films were prepared with success by the polymeric precursor method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Micro-Raman spectroscopy and X-ray diffraction (XRD) were used to investigate the formation of the PZT perovskite phase. X-ray diffraction revealed that the film showed good crystallinity and no presence of secondary phases was identified. This indicates that the PZT thin films were crystallized in a single phase. PZT thin films showed a well-developed dense grain structure with uniform distribution, without the presence of rosette structure. The Raman spectra undoubtedly revealed these thin films in the tetragonal phase. For the thin films annealed at the 500-700 degreesC range, the vibration modes of the oxygen sublattice of the PZT perovskite phase were confirmed by FT-IR. The room temperature dielectric constant and dielectric loss of the PZT films, measured at 1 kHz were 646 and 0.090, respectively, for thin film with 365 nm thickness annealed at 700 degreesC for 2 h. A typical P-E hysteresis loop was observed and the measured values of P-s, P-r and E-c were 68 muC/cm(2), 44 muC/cm(2) and 123 kV/cm, respectively. The leakage current density was about 4.8 x 10(-7) A/cm(2) at 1.5 V. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline SrTiO3 thin films having a cubic perovskite structure were prepared at different temperatures by the polymeric precursor method on platinum-coated silicon substrate. Crystalline films with uniform composition and thickness were prepared by spin-coating and the post-deposition heat treatment was carried out at different temperatures. The film showed good structural, dielectric, and insulating properties, Scanning electron microscopy (SEM) micrographs showed no occurrence of interdiffusion between the bottom electrode (platinum) and the film during post-annealing, indicating a stable interface between the SrTiO3 and the bottom electrode. The dielectric constant and dissipation factor at a frequency of 100 kHz were 250 and 0.01, respectively, for a 360 nm thick film annealed at 600 degreesC. The capacitance versus applied voltage characteristics showed that the capacitance was almost independent of the applied voltage. The I-V characteristics were ohmic in low fields and a Schottky emission and/or Poole-Frenkel emission were postulated in high fields. Room temperature leakage current density was found to be in the order of 10(-7) A/cm(2) for a 360 nm thick film in an applied electric field of about 100 kV/cm. The charge storage density of 36 fC/mum(2) was obtained in an applied electric field of about 100 kV/cm. (C) 2001 Published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). The influence of the different dispersants on the powder surface properties were investigated by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by electrophoretic deposition using a 4 mA constant current, for 10 min, with two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit was carried out until the desired thickness was obtained. After thermal treatment at temperatures ranging from 700 to 1000degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy.