998 resultados para potassium-40


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface structure of the clean Co{1010BAR} surface and a c(2 x 2) potassium overlayer have been determined by quantitative low energy electron diffraction. The Co{1010BAR} sample has been shown to be laterally unreconstructed with the surface being uniquely terminated by an outermost closely packed double layer (dz12 = 0.68 angstrom). A damped oscillatory relaxation of the outermost three atomic layers occurs, with relaxations DELTA-dz12 = -6.5 +/- 2% and DELTA-dz23 = +1.0 +/- 2%.

The c(2 x 2) overlayer formed at a coverage of 0.5 ML was subjected to a full I-V analysis. A range of adsorption sites were tested including fourfold hollow, on-top, and both long and short bridge sites in combination with both "long" and "short" cobalt interlayer terminations. A clear preference was found for adsorption in the maximal coordination fourfold hollow site. No switching of surface termination occurs. The potassium adatoms reside in the [1210BAR] surface channels directly above second layer cobalt atoms with a potassium to outermost cobalt interlayer separation of 2.44 +/- 0.05 angstrom. Potassium-cobalt bond lengths of 3.40 +/- 0.05 and 3.12 +/- 0.05 angstrom between the four (one) outermost (second) layer nearest-neighbour substrate atoms suggests a potassium effective radius of 1.87 +/- 0.05 angstrom, somewhat smaller than the Pauling covalent radius and considerably larger than the ionic radius (1.38 angstrom). The alkali-surface bonding is thus predominantly "covalent"/"metallic".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K(+)) and ammonium (NH(4)(+)). We present the results for the distributions of (137)Cs, (40)K and NH(4)(+) from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of (137)Cs and (40)K were measured by gamma spectrometry and concentrations of free NH(4)(+) ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for (40)K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, (137)Cs was not well correlated with NH(4)(+). Significant temporal changes in the NH(4)(+) concentrations were observed during the development of fruits, while the (137)Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs(+) and free NH(4)(+) ions could have distinct concentration ratios for each particular plant organ. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim
Reducing dietary sodium and increasing dietary potassium are recommended to reduce blood pressure. This study aimed to determine the main foods sources of sodium and potassium.

Methods
Participants were recruited via advertisements or blood pressure screening sessions. Food sources of sodium and potassium were assessed via 24-hour dietary records in 299 free-living Australian adults (141 male, 158 female; age 54.6(9.5)years; BMI 29.4(3.9)kg/m2).

Results
The mean sodium intake was 118(51)mmol/d (2725(1176)mg/d) and the mean potassium intake was 91(28)mmol/d (3550(1098)mg/d). Breads and cereals provided the majority (38%) of sodium with bread contributing 20%. Vegetable products/dishes contributed most potassium (23%) with potatoes providing 9%. Main meals provided 89% of sodium and 85% of potassium. Lunch and dinner provided similar sodium proportions (34% and 38%, respectively) but more energy was consumed at dinner (26% vs 40%, respectively). Lunch had the highest sodium density of all meals (420 mg/MJ).

Conclusion
A reduction in the salt content of processed foods, particularly bread, is recommended to decrease sodium intake. This reduction in salt content combined with meal specific education focusing on choosing lower sodium foods at lunch in particular, as well as incorporating more fruits and vegetables, could effectively reduce dietary sodium and increase potassium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Candido Rondon, Parana State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers - either in isolation or in combination - resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O algodoeiro (Gossypium hirsutum ) apresenta alta exigência de K e é muito sensível a baixo pH do solo. A maior parte do K chega às raízes das plantas por difusão no solo. Por existir interação do K com Ca e Mg, a calagem pode interferir no movimento do K no solo, afetando a nutrição da planta. O objetivo deste trabalho foi estudar o efeito de calcário dolomítico e de 0, 15, 30, 45 e 60 g kg-1 de K no suprimento de potássio às raízes do algodoeiro. As plantas foram cultivadas por 40 dias em vasos de 5 L contendo um Latossolo Vermelho-Escuro (68% de areia e 16% de argila). Houve um acréscimo na produção de matéria seca e na acumulação de K em função da adubação potássica. A intercepção radicular do K do solo foi também aumentada pela aplicação de K, mas não foi afetada pela calagem. O fluxo de massa e a difusão foram aumentadas linearmente com a aplicação de K até 60 mg kg-1, nos vasos com calagem. em vasos sem calagem a quantidade de K atingindo as raízes por difusão aumentou até 45 mg kg-1, decrescendo com a dose máxima de potássio. do mesmo modo, mais K entrou em contato com as raízes por fluxo de massa com a maior dose do nutriente. Isto aconteceu porque havia mais raízes finas nos vasos sem calagem e com a dose máxima de potássio. Com a diminuição da distância média entre as raízes, houve maior competição entre elas, culminando com a diminuição do K difundido até as raízes do algodoeiro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invertebrate's musculature still presents many elusive points, especially in molluscs that generally present smooth and cracked fibers with peculiar characteristics. It was found that the molluscs reactions to the ion variation in the bathing are not very clear, mainly in view of the isolated reduction or equivalent of the ions. Suspended in bath, the isolated esophagus of the P. lineata exhibited spontaneous activity. This rhythmic activity was sensitive to the ion variation of the perfusion liquid, evidenced by alterations in the spontaneous contractions. The equivalent reduction of the ion reduced the spontaneous activity, evidenced by the amplitude reduction of the response, besides maintaning an organ contraction, primarily in the reductions below 50%. When the isolated reductions of the Na, Ca or K ion were performed, occurred interference in the spontaneous contractions of the organs, principally in amplitude of the response and maintenance of the contracture in reductions of 50 and 25% of the ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pearl millet (Penisetum glaucum) is an interesting species to be used as cover crop in tropical areas, showing a high ability in potassium uptake. Potassium (K) is not linked to organic compounds in the plant, and can easily be released from decaying straw becoming available for subsequent crops. This experiment evaluated K leaching from millet straw grown under potassium rates (0, 100, 200, and 300 mg dm-3), and submitted to five levels of simulated rain (5, 10, 20, 40, and 80 mm). Plants were grown in soil filled pots in a greenhouse. On the 50th day after emergence, the plants were desiccated with glyphosate. Artificial rain was applied over the straw. Potassium deficiency speeds up millet dehydration after herbicide application and increases lightly rain water retention in the straw. The amount of K leached right after plant desiccation is correlated with the residue nutrient content and can be as high as 64 kg ha-1 considering a mulch of 8 t ha -1. Although well-nourished millet plants release considerable amounts of K with the first rains, a large percentage of the nutrient is still retained in the straw. Copyright © Taylor & Francis, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plant’s nutritional balance can influence its resistance to diseases. In order to evaluate the effect of increasing doses of N and K on the yield and severity of the maize white spot, two experiments were installed in the field, one in the city of Ijaci, Minas Gerais, and the other in the city of Sete Lagoas, Minas Gerais. The experimental delimitation was in randomized blocks with 5 x 5 factorial analysis of variance, and four repetitions. The treatments consisted of five doses of N (20; 40; 80; 150; 190 Kg ha-1 of N in the experiments 1 and 2) and five doses of K (15; 30; 60; 120; 180 Kg ha-1 of K in experiment 1 and 8.75; 17.5; 35; 50; 100 Kg ha-1 of K in experiment 2). The susceptible cultivar 30P70 was planted in both experiments. The plot consisted of four rows 5 meters long, with a useful area consisting of two central rows 3 meters each. Evaluations began 43 days after emergence (DAE) in the first experiment and 56 DAE in the second one. There was no significant interaction between doses of N and K and the disease progress. The effect was only observed for N. The K did not influence the yield and the severity of the disease in these experiments. Bigger areas below the severity progress curve of the white spot and better yield were observed with increasing doses of N. Thus, with increasing doses of N, the white spot increased and also did the yield.