755 resultados para polypyrrole dispersions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symmetry group analysis is applied to classify the phonon modes of N-stacked graphene layers (NSGLs) with AB and AA stacking, particularly their infrared and Raman properties. The dispersions of various phonon modes are calculated in a multilayer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the interlayer interactions in NSGLs. The experimentally reported redshift phenomena in the layer-number dependence of the intralayer optical C-C stretching mode frequencies are interpreted. An interesting low-frequency interlayer optical mode is revealed to be Raman or infrared active in even or odd NSGLs, respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole nanostructure arrays, including simultaneously large quantities of nanowires and small quantities of partially filled nanotubules have been electrochemically synthesized in home-made etched ion-track polycarbonate (PC) templates. Diameter of the prepared nanostructures varies from 45 to 320 nm with their lengths up to 30 microns. Morphological studies of these nanostructures were performed by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. While optical absorption properties were studied by ultraviolet-visible-near infrared spectrophotometry (UV-vis-NIR). It has been observed that the absorption maximum of polypyrrole shifts to the longer wavelength side as the diameter of these nanostructures (nanowires and nanotubules) increases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL(-1), and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable polyacrylamide (PAM) aqueous dispersions were prepared by dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate (AS) using Poly (sodium acrylic acid) (PAANa) as the stabilizer, ammonium persulfate (APS) or 2,2'-Azobis (N,N'-dimethyleneisobutyramidine) dihydrochloride (VA-044) as the initiator. The molecular weight of the formed PAM, ranged from 710, 000 g/mol to 4,330,000 g/mol, was controlled by the addition of sodium formate as a conventional chain-transfer agent. The progress of a typical AM dispersion polymerization was monitored with aqueous size exclusion chromatography. The influences, of the AS concentration, the poly(sodium acrylic acid) concentration, the initiator type and concentration, the chain-transfer agent concentration and temperature Oil the monomer conversion, the dispersion viscosity, the PAM molecular weight and distribution, the particle size and morphology were systematically investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phosphopolyoxomolybdate (P2Mo18) doped polypyrrole (PPy) modified electrode was prepared in aqueous solution by a one-step method. During the polymerization of PPy, P2Mo18 acted as both catalyst and dopant. The electrochemical behavior of the PPy/P2Mo18 modified electrode before and after the overoxidation of PPy was investigated. Both of these showed a catalytic effect toward bromate. The PPy/P2Mo18 composite film was characterized by chronoamperometry, cyclic voltammetry, the rotating disk electrode technique, X-ray photoelectron spectroscopy and Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel spherical three-dimensional (3D) dendritic gold-polypyrrole nanocomposites were successfully prepared in the presence of an amphiphilic p-toluene sulfonic acid (TSA) as dopant and surfactant via a self-assembly process which is based on the oxidation of pyrrole (Py) and the reduction of the chloroaurate ions, yielding PPy and Au(0) simultaneously. It was found that the probability of obtaining dendritic Au@PPy/TSA nanostructures depended on the concentration of TSA and the rate of addition of the oxidant (HAuCl4), It was also proposed that the supramolecular micelles formed by Py and TSA play the role of a 'soft template' to produce the dendritic Au@PPy/TSA nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A layer-by-layer (LbL) adsorption and polymerization method was developed for the controllable preparation of polypyrrole (PPy) nanoparticles within ultrathin films. By repetitive adsorption of pyrrole and subsequent polymerization with 12-molybdophosphoric acid, the polyelectrolyte multilayer films containing PPy nanoparticles were fabricated. UV-visible absorption spectrocopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic voltammograras (CVs) were used to characterize the PPy nanoparticles and their multilayer thin films. UV-visible spectra indicate that the growth of PPy nanoparticles was regular and occurred within the polyelectrolyte films. The size of prepared PPy nanoparticles was found by TEM to increase with the increasing of polymerization cycles. The electrochemistry behavior of the multilayer thin films was studied in detail on ITO. The results suggest that the LbL adsorption and polymerization method developed herein provides an effective way to prepare PPy nanoparticles in the polymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole (Ppy) was successfully introduced into methyl substituted sulfonated poly(ether ether ketone) (SPEEK) membranes by polymerization in SPEEK solutions to improve their methanol resistance. Uniform polypyrrole (Ppy) distributed composite membranes were formed by this method by the interaction between SPEEK and Ppy. The properties of the composite membranes were characterized in detail. The composite membranes show very good proton conductive capability (25 degrees C: 0.05-0.06s cm(-1)) and good methanol resistance (25 degrees C: 5.3 x 10(-7) 1.1 x 10(-6) cm(2) s(-1)). The methanol diffusion coefficients of composite membranes are much lower than that of pure SPEEK membranes (1.5 x 10(-6) cm(2) s(-1)). The composite membranes show very good potential usage in direct methanol fuel cells (DMFCs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polyelectrolyte-functionalized ionic liquid (PFIL)/poly(4-styrene sulfonate sodium) (PSS) modified electrode composed of the coaxial and coplanar working, reference and counter electrodes, was used to electropolymerize the polypyrrole. The PFIL/PSS was modified on the integrated electrode (IE) and connected by the working, reference and counter electrodes, resulting in an available charge transfer and lower Ohmic potential drop between the working and counter electrodes. Then polypyrrole (PPy) film was successfully prepared electrochemically without any participation of supporting electrolytes, only in a pyrrole monomer solution. The resulting PPy film in PFIL/PSS matrix exhibited a preferable electroactivity. Subsequently, influence of the modifications on the formation of PPy was further discussed. The results indicated that the synergetic cooperation of PFIL and PSS components accomplished such a successful electropolymerization of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0 x 10(-5) and 1.3 x 10(-3) M glucose. The biosensor showed a good suppression of interference in the amperometric detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor for the detection of hydrogen peroxide was described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gave response to hydrogen peroxide in a few seconds with detection limit of 5.0 x 10(-5) M (based on signal:noise = 3). Linear range was upto 0.2 mM. The biosensor exhibited a good stability. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel amperometric biosensor for the detection of hydrogen peroxide is described. The biosensor was constructed by electrodepositing HRP/PPy membrane on the surface of ferrocenecarboxylic acid mediated sol-gel derived composite carbon electrode. The biosensor gives response to hydrogen peroxide in a few seconds with detection limit of 5x10(-7) mol (.) L-1 (based on signal : noise=3). Linear range is up to 0.2 mmol (.) L-1.