985 resultados para poly(p-xylylenes)
Resumo:
Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.
Resumo:
Since conjugated polymers, i.e. polymers with spatially extended pi-bonding system have offered unique physical properties, unobtainable for conventional polymers, significant research efforts directed to better understanding of their chemistry, physics and engineering have been undertaken in the past two and half decades. In this thesis we discuss the synthesis, characterisation and investigation of conjugated semiconducting organic materials for electronic applications. Owing to the versatile properties of metal-organic hybrid materials, there is significant promise that these materials can find use in optical or electronic devices in the future. In addressing this issue, the synthesis of bisthiazol-2-yl-amine (BTA) based polymers is attempted and their metallation is investigated. The focus of this work has been to examine whether the introduction of coordinating metal ions onto the polymer backbone can enhance the conductivity of the material. These studies can provide a basis for understanding the photophysical properties of metal-organic polymers based on BTA. In their neutral (undoped) form conjugated polymers are semiconductors and can be used as active components of plastics electronics such as polymer light-emitting diodes, polymer lasers, photovoltaic cells, field-effect transistors, etc. Toward this goal, it is an objective of the study to synthesize and characterize new classes of luminescent polymeric materials based on anthracene and phenanthrene moieties. A series of materials based on polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits are not only presented but the synthesis and characterization of step-ladder and ladder poly(p-phenylene-alt-anthrylene)s containing 9,10-anthrylene building groups within the main chain are also explored. In a separate work, a series of soluble poly-2,7- and 3,6-phenanthrylenes are synthesized. This can enable us to do a systematic investigation into the optical and electronic properties of PPP-like versus PPV-like. Besides, the self-organization of 3,6-linked macrocyclic triphenanthrylene has been investigated by 2D wide-angle X-ray scattering experiments performed on extruded filaments in solution and in the bulk. Additionally, from the concept that donor-acceptor materials can induce efficient electron transfer, the covalent incorporation of perylene tetracarboxydiimide (PDI) into one block of a poly(2,7-carbazole) (PCz)-based diblock copolymer and 2,5-pyrrole based on push-pull type material are achieved respectively.
Resumo:
Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung einer neuartigen Synthesestrategie von π-konjugierten Plasmapolymeren durch die Anwendung von vorstrukturierten aromatischen Precursoren und gepulsten Niederdruckplasmen. Es gelang erstmals die strukturtreue Synthese von π-konjugierten organischen Plasmapolymeren mit dem vollkommenen Erhalt der aromatischen Funktionalität und der selektiven para-Verknüpfung aromatischer Einheiten durch geeignete Heteroatome. Hierbei kamen 1,4-Dithiophenol zur Synthese von Plasmapoly(p-phenylensulfid) und 4-Iodanilin zur Synthese von Plasmapolyanilin zur Anwendung. Die mit hoher Präzision abgeschiedenen Filme konnten sowohl postsynthetisch als auch in situ p-dotiert werden. Die chemischen Strukturen sowie deren physikalisch-chemischen Eigenschaften konnten vor allem mittels Röntgenphotoelektronen-, UV-VIS-NIR-, IR-, NMR-, ESR- und Impedanz-Spektroskopie aufgeklärt werden. Die synthetisierten dotierten Plasmapolymere zeigten eindeutig ohmsche Leistungsmechanismen, teilweise mit einer Leitfähigkeitserhöhung von bis zu 8 Dekaden gegenüber dem undotierten konventionellen Polymer.
Resumo:
The main goals of this thesis were the design, synthesis, and characterization of novel organic semiconductors, together with their applications in electronics, such as OFETs, OPVs, and OLEDs. The results can be summarized as follows:rn1. In chapter II, two novel angular n-type molecules were presented. Their different alkyl chains play a pivotal role in the molecular orientation relative to surface. One molecule with longer branched chains is tilted with respect to the substrate, thereby resulting in poor device performance, while the other adopt an edge-on orientation with an OFET electron mobility of 0.01 cm2 V-1 s-1.rn2. In chapter III, fused bis-benzothiadiazoles with different molecular geometries, namely linear benzoquinone-fused bis(benzothiadiazole) and V-shaped sulfone-fused bis(benzothiadiazole), were shown. This work not only contributes to the diversity of electron acceptors based on bis-benzothiadiazole moieties, but also highlights the important role of molecular shape for the solid-state packing of organic conjugated materials. In chapter IV, we demonstrated the synthesis of layered acceptors via dimerization of thiadiazole end-capped acenes. Interestingly, they feature huge differences in their photophysical properties. One compound showed a new strong emission in the near-infrared region introduced by the aggregation effect. The planosymmetric compound featured intramolecular excimer (IEE) fluorescence in solution. rn3. In chapter V and VI, we have demonstrated the synthesis of novel spiro-bifluorene based asymmetric and symmetric cruciform electron acceptors with dicyanovinylene substitutions. The solar cells based on PTB7:asymmetric acceptor yields the highest PCE of 0.80%. Such results demonstrate for the first time that dicyanovinylene substituted acceptor could be an alternative to fullerene-based acceptors. rn4. In chapter VII, two novel blue-emitting compounds were shown, which consist of dihydroindenofluorenyl units and ladder-type poly-p-phenylene groups, respectively. The two novel cruciform rigid compounds present not only excellent thermal and electrochemical stability but also high PLQYs. Through analysis of their triplet energy levels, both molecules can be served as hosts for other normal fluorescent or phosphorescent materials.rn
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
Inorganic polyphosphate [poly(P)] levels in Escherichia coli were reduced to barely detectable concentrations by expression of the plasmid-borne gene for a potent yeast exopolyphosphatase [poly(P)ase]. As a consequence, resistance to H2O2 was greatly diminished, particularly in katG (catalase HPI) mutants, implying a major role for the other catalase, the stationary-phase KatE (HPII), which is rpoS dependent. Resistance was restored to wild-type levels by complementation with plasmids expressing ppk, the gene for PPK [the polyphosphate kinase that generates poly(P)]. Induction of expression of both katE and rpoS (the stationary-phase σ factor) was prevented in cells in which the poly(P)ase was overproduced. Inasmuch as this inhibition by poly(P)ase did not affect the levels of the stringent-response guanosine nucleotides (pppGpp and ppGpp) and in view of the capacity of additional rpoS expression to suppress the poly(P)ase inhibition of katE expression, a role is proposed for poly(P) in inducing the expression of rpoS.
Resumo:
Endopolyphosphatases (Ppn1) from yeast and animal cells hydrolyze inorganic polyphosphate (poly P) chains of many hundreds of phosphate residues into shorter lengths. The limit digest consists predominantly of chains of 60 (P60) and 3 (P3) Pi residues. Ppn1 of Saccharomyces cerevisiae, a homodimer of 35-kDa subunits (about 352-aa) is of vacuolar origin and requires the protease activation of a 75-kDa (674-aa) precursor polypeptide. The Ppn1 gene (PPN1) now has been cloned, sequenced, overexpressed, and deleted. That PPN1 encodes Ppn1 was verified by a 25-fold increase in Ppn1 when overexpressed under a GAL promoter and also by several peptide sequences that match exactly with sequences in a yeast genome ORF, the mutation of which abolishes Ppn1 activity. Null mutants in Ppn1 accumulate long-chain poly P and are defective in growth in minimal media. A double mutant of PPN1 and PPX1 (the gene encoding a potent exopolyphosphatase) loses viability rapidly in stationary phase. Whether this loss is a result of the excess of long-chain poly P or to the lack of shorter chains (i.e., poly P60 and P3) is unknown. Overexpression of the processed form of Ppn1 should provide a unique and powerful reagent to analyze poly P when the chain termini are unavailable to the actions of polyPase and poly P kinase.
Resumo:
In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM 1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.
Resumo:
In the printing industry, the exploitation of triggerable materials that can have their surface properties altered on application of a post-deposition external stimulus has been crucial for the production of robust layers and patterns. To this end, herein, a series of clickable poly(R-alkyl p-styrene sulfonate) homopolymers, with systematically varied thermally-labile protecting groups, has been synthesised via reversible addition-fragmentation chain transfer (RAFT) polymerisation. The polymer range has been designed to offer varied post-deposition thermal treatment to switch them from hydrophobic to hydrophilic. Suitable RAFT conditions have been identified to produce well-defined homopolymers (Đ, Mw/Mn < 1.11 in all cases) at high monomer conversions (>80% for all but one monomer) with controllable molar mass. Poly(p-styrene sulfonate) with an isobutyl protecting group has been shown to be the most readily thermolysed polymer that remains stable at room temperature, and was thus investigated further by incorporation into a diblock copolymer, P3HT-b-PiBSS, by click chemistry. The strategy for preparation of thermal modifiable block copolymers exploiting R-protected p-styrene sulfonates and azide-alkyne click chemistry presented herein allows the design of new, roll-to-roll processable materials for potential application in the printing industry, particularly organic electronics.
Resumo:
Organic Solar Cells (OSCs) represent a photovoltaic technology with multiple interesting application properties. However, the establishment of this technology into the market is subject to the achievement of operational lifetimes appropriate to their application purposes. Thus, comprehensive understanding of the degradation mechanisms occurring in OSCs is mandatory in both selecting more intrinsically stable components and/or device architectures and implementing strategies that mitigate the encountered stability issues. Inverted devices can suffer from mechanical stress and delamination at the interface between the active layer, e.g. poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), and the hole transport layer, e.g. poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS). This work proposes the incorporation of a thin adhesive interlayer, consisting of a diblock copolymer composed of a P3HT block and a thermally-triggerable, alkyl-protected PSS block. In this context, the synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) with controlled molar mass and low dispersity (Ð ≤ 1.50) via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation has been extensively studied. Subsequently, Atomic Force Microscopy (AFM) was explored to characterise the thermal deprotection of P3HT-b-PNSS thin layers to yield amphiphilic P3HT-b-PSS, indicating that surface deprotection prior to thermal treatment could occur. Finally, structural variation of the alkyl protecting group in PSS allowed reducing the thermal treatment duration from 3 hours (P3HT-b-PNSS) to 45 minutes for the poly(isobutyl p-styrene sulfonate) (PiBSS) analogous copolymer. Another critical issue regarding the stability of OSCs is the sunlight-driven chemical degradation of the active layer. In the study herein, the combination of experimental techniques and theoretical calculations has allowed identification of the structural weaknesses of poly[(4,4’- bis(2-ethylhexyl) dithieno [3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl], Si-PCPDTBT, upon photochemical treatment in air. Additionally, the study of the relative photodegradation rates in air of a series of polymers with systematically modified backbones and/or alkyl side chains has shown no direct correlation between chemical structure and stability. It is proposed instead that photostability is highly dependent on the crystalline character of the deposited films. Furthermore, it was verified that photostability of blends based on these polymers is dictated by the (de)stabilising effect that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has over each polymer. Finally, a multiscale analysis on the degradation of solar cells based on poly[4,4' bis(2- ethylhexyl) dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-[2,5 bis(3 tetradecylthiophen 2-yl)thiazole[5,4-d]thiazole)-1,8-diyl] and PCBM, indicated that by judicious selection of device layers, architectures, and encapsulation materials, operational lifetimes up to 3.3 years with no efficiency losses can be successfully achieved.
Resumo:
Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly(p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (~10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.
Resumo:
Conjugated polymers (CPs) are intrinsically fluorescent materials that have been used for various biological applications including imaging, sensing, and delivery of biologically active substances. The synthetic control over flexibility and biodegradability of these materials aids the understanding of the structure-function relationships among the photophysical properties, the self-assembly behaviors of the corresponding conjugated polymer nanoparticles (CPNs), and the cellular behaviors of CPNs, such as toxicity, cellular uptake mechanisms, and sub-cellular localization patterns. ^ Synthetic approaches towards two classes of flexible CPs with well-preserved fluorescent properties are described. The synthesis of flexible poly( p-phenylenebutadiynylene)s (PPBs) uses competing Sonogashira and Glaser coupling reactions and the differences in monomer reactivity to incorporate a small amount (∼10%) of flexible, non-conjugated linkers into the backbone. The reaction conditions provide limited control over the proportion of flexible monomer incorporation. Improved synthetic control was achieved in a series of flexible poly(p-phenyleneethynylene)s (PPEs) using modified Sonogashira conditions. In addition to controlling the degree of flexibility, the linker provides disruption of backbone conjugation that offers control of the length of conjugated segments within the polymer chain. Therefore, such control also results in the modulation of the photophysical properties of the materials. ^ CPNs fabricated from flexible PPBs are non-toxic to cells, and exhibit subcellular localization patterns clearly different from those observed with non-flexible PPE CPNs. The subcellular localization patterns of the flexible PPEs have not yet been determined, due to the toxicity of the materials, most likely related to the side-chain structure used in this series. ^ The study of the effect of CP flexibility on self-assembly reorganization upon polyanion complexation is presented. Owing to its high rigidity and hydrophobicity, the PPB backbone undergoes reorganization more readily than PPE. The effects are enhanced in the presence of the flexible linker, which enables more efficient π-π stacking of the aromatic backbone segments. Flexibility has minimal effects on the self-assembly of PPEs. Understanding the role of flexibility on the biophysical behaviors of CPNs is key to the successful development of novel efficient fluorescent therapeutic delivery vehicles.^
Resumo:
Films of poly (2,5-dicyano-p-phenylene vinylene), DCNPPV, were obtained by electrochemical synthesis over gold thin layer (20 nm) transparent electrode deposited on a glass plate. The DCNPPV films of 4 µm thickness were produced by electropolymerization process of α,α,α',α'-tetrabromo-2-5-dicyano-p-xilene at different applied potentials (-0.15, -0.25, -0.40, -0.60, -0.80, and -1.0 V) using 0.1 mol L-1 of tetraethylammonium bromide in acetonitrile as the supporting electrolyte. The emission decays have three exponential components: a fast component in the picosecond range (200-400 ps), and two other of about one and five nanoseconds at 293 K. The fluorescence quenching process seems to occur by exciton trapping in a low-energy site and quenching by residual bromine monomer attached at the end of the polymer chain. However, the electrochemical synthesis generates entrapped bromide or ion pairs during the growth step of the film which also contributes to the deactivation. The change of the electrolyte from bromide to perchlorate reduces significantly this additional quenching effect by allowing ion exchange of formed bromide with the nonquenching perchloride anion.
Resumo:
The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from sucrose and propionic acid by Burkholderia sacchari IPT 189 was studied using a two-stage bioreactor process. In the first stage, this bacterium was cultivated in a balanced culture medium until sucrose exhaustion. In the second stage, a solution containing sucrose and propionic acid as carbon source was fed to the bioreactor at various sucrose/propionic acid (s/p) ratios at a constant specific flow rate. Copolymers with 3HV content ranging from 40 down to 6.5 (mol%) were obtained with 3HV yield from propionic acid (Y-3HV/prop) increasing from 1.10 to 1.34 g g(-1). Copolymer productivity of 1 g l(-1) h(-1) was obtained with polymer biomass content rising up to 60% by increasing a specific flow rate at a constant s/p ratio. Increasing values of 3HV content were obtained by varying the s/p ratios. A simulation of production costs considering Y-3HV/prop obtained in the present work indicated that a reduction of up to 73% can be reached, approximating US$ 1.00 per kg which is closer to the value to produce P3HB from sucrose (US$ 0.75 per kg).