966 resultados para poliedri formula di Eulero teorema di rigidità di Cauchy
Resumo:
Il lavoro concerne il gruppo delle trecce, il suo legame con i link e si concentra sui teoremi di Markov e Alexander.
Resumo:
Progettazione dei mozzi ruota della vettura 2012 del team UniBo Motorsport, il team di formula SAE dell'università di Bologna.
Resumo:
Questa tesi di laurea tratta delle partizioni di un intero positivo. La tesi viene suddivisa in tre capitoli: nel primo capitolo definirò cosa significa scomporre additivamente un intero positivo e come si può rappresentare una partizione cioè utilizzando diagrammi, chiamati \textit{diagrammi di Ferrers}, o tabelle, chiamate \textit{tableau di Young}, si possono rappresentare graficamente partizioni. In seguito, in questo capitolo, verrà definita la funzione di partizione e, infine, tratterò delle partizioni ordinate. Il secondo capitolo ha carattere storico: infatti, mostra come cinque famosi matematici, Eulero, Ramanujan e Hardy, Hans Rademacher e Ken Ono, nel tempo abbiano affrontato il problema di trovare una formula matematica che meglio rappresenti la funzione di partizione. Il terzo ed ultimo capitolo riguarda le applicazioni delle partizioni, cioè come esse abbiano una relazione con le classi di coniugio nel gruppo simmetrico $S_{n}$ e con le classificazioni dei gruppi abeliani di ordine $p^{n}$, con p un numero primo. Di alcune affermazioni ( o teoremi ) nei capitoli seguenti non è stata riportata la dimostrazione; in questi casi si rimanda direttamente alle corrispondenti citazioni bibliografiche.
Resumo:
Questa tesi si prefigge lo scopo di dimostrare il teorema di Igusa. Inizia introducendo algebricamente i numeri p-adici e ne dà una rappresentazione grafica. Sviluppa poi un integrale definito dalla misura di Haar, invariante per traslazione e computa alcuni esempi. Utilizza il blow up come strumento per la risoluzione di alcuni integrali ed enuncia un'applicazione del teorema di Hironaka sulla risolubilità delle singolarità. Infine usa questi risultati per dimostrare il teorema di Igusa.
Resumo:
Questo lavoro si pone come obiettivo l'approfondimento della natura e delle proprietà dei polinomi espressi mediante la base di Bernstein. Introdotti originariamente all'inizio del '900 per risolvere il problema di approssimare una funzione continua su un intervallo chiuso e limitato della retta reale (Teorema di Stone-Weierstrass), essi hanno riscosso grande successo solo a partire dagli anni '60 quando furono applicati alla computer-grafica per costruire le cosiddette curve di Bezier. Queste, ereditando le loro proprietà geometriche da quelle analitiche dei polinomi di Bernstein, risultano intuitive e facilmente modellabili da un software interattivo e sono alla base di tutti i più moderni disegni curvilinei: dal design industriale, ai sistemi CAD, dallo standard SVG alla rappresentazione di font di caratteri.
Resumo:
La seguente tesi affronta la dimostrazione del teorema dei quattro colori. Dopo un introduzione dei concetti cardine utili alla dimostrazione, quali i concetti ed i risultati principali della teoria dei grafi e della loro colorazione, viene affrontata a livello prima storico e poi tecnico l'evoluzione della dimostrazione del teorema, che rimase congettura per 124 anni.
Resumo:
Il teorema della mappa di Riemann è un risultato fondamentale dell'analisi complessa che afferma l'esistenza di un biolomorfismo tra un qualsiasi dominio semplicemente connesso incluso strettamente nel piano ed il disco unità. Si tratta di un teorema di grande importanza e generalità, dato che non si fa alcuna ipotesi sul bordo del dominio considerato. Inoltre ha applicazioni in diverse aree della matematica, ad esempio nella topologia: può infatti essere usato per dimostrare che due domini semplicemente connessi del piano sono tra loro omeomorfi. Presentiamo in questa tesi due diverse dimostrazioni del teorema.
Resumo:
La tesi consiste nella ricerca di un candidato ideale per la soluzione del problema di Dirichlet. Vengono affrontati gli argomenti in maniera graduale, partendo dalle funzioni armoniche e le loro relative proprietà, passando per le identità e le formule di rappresentazione di Green, per finire nell'analisi del problema sopra citato, mediante i risultati precedentemente ottenuti, per concludere trovando la formula integrale di Poisson come soluzione ma anche come formula generale per sviluppi in vari ambiti.