839 resultados para plasma spraying, surface modification, sphene, osteoblasts, titanium alloy
Resumo:
The stereology, variant distribution and coarsening behavior of semicoherent alpha(hcp) precipitates in a beta(bcc) matrix of a Ti5553 alloy has been analyzed, and a dominant 3-variant cluster has been observed in which the variants are related to each other by an axis-angle pair <<11(2)over bar> 0 >/60 degrees. Shape and spatial distribution independent elastic self and interaction energies for all pairwise and triplet combinations of a have been calculated and it is found that the 3-cluster combination that is experimentally observed most frequently has the lowest energy for the semicoherent state. The coarsening behavior of the delta distribution follows LSW kinetics after an initial transient, and has been modeled by phase field methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The nanocrystal surface layer of an aluminum alloy induced by High Speed Shot Peening (HSSP) was investigated in this paper. The results of nanoindentation experiment show that the elastic modulus and the hardness of nanocrystal surface layer increased,by 8% and 20%, respectively. The elastic modulus and the hardness appear to be independent of the distance from nanocrystalized surface and the process time.
Resumo:
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.
Resumo:
利用层流等离子体射流,以普通工程铁丝为喷涂材料,在Q235基体表面制备金属涂层,并利用喷涂系统的参数可调性研究工艺参数对涂层质量的影响。结果表明,利用层流等离子体射流喷涂可以得到具有典型层状结构、氧化较少的致密涂层。
Resumo:
One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.
Resumo:
For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An optimal algorithm of manufacturing path planner for intelligent laser surface modification is presented. Elements included in the optimal objective have been analyzed. A 6-D manufacture trace that satisfies the requirements of special craft and 5-axis laser processing robot system has been generated from the path planner by method of parallel section in which combinations of modification spots size with curvature of processing surfaces and modification craft parameters are considered. Related experiments have been successfully carried out with the computer integrated multifunctional laser manufacturing system.