227 resultados para passivation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of hydrogen-plasma passivation on the optical and electrical properties of gallium antimonide bulk single crystals is presented. Fundamental changes of the radiative recombination after hydrogenation in undoped, zinc-doped, tellurium-doped, and codoped (with Zn and Te) GaSb are reported. The results of optical measurements indicate that passivation of acceptors is more efficient than that of the donors and, in general, the passivation efficiency depends on the doping level. Passivation of deep nonradiative centers is reflected by the gain of photoluminescence intensity and decrease in deep-level transient spectroscopy peak height. Extended defects like grain boundaries and dislocations have also been found to be passivated. The thermal stability of the passivated deep level and extended defects is higher than that of the shallow level. The kinetics of thermally released hydrogen in the bulk has been studied by reverse-bias annealing experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CdTe thin films of 500 thickness prepared by thermal evaporation technique were analyzed for leakage current and conduction mechanisms. Metal-insulator-metal (MIM) capacitors were fabricated using these films as a dielectric. These films have many possible applications, such as passivation for infrared diodes that operate at low temperatures (80 K). Direct-current (DC) current-voltage (I-V) and capacitance-voltage (C-V) measurements were performed on these films. Furthermore, the films were subjected to thermal cycling from 300 K to 80 K and back to 300 K. Typical minimum leakage currents near zero bias at room temperature varied between 0.9 nA and 0.1 mu A, while low-temperature leakage currents were in the range of 9.5 pA to 0.5 nA, corresponding to resistivity values on the order of 10(8) a''broken vertical bar-cm and 10(10) a''broken vertical bar-cm, respectively. Well-known conduction mechanisms from the literature were utilized for fitting of measured I-V data. Our analysis indicates that the conduction mechanism in general is Ohmic for low fields < 5 x 10(4) V cm(-1), while the conduction mechanism for fields > 6 x 10(4) V cm(-1) is modified Poole-Frenkel (MPF) and Fowler-Nordheim (FN) tunneling at room temperature. At 80 K, Schottky-type conduction dominates. A significant observation is that the film did not show any appreciable degradation in leakage current characteristics due to the thermal cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the ease of modification of electronic structure upon analyte adsorption, semiconductors have been the preferred materials as chemical sensors. At reduced dimension, however, the sensitivity of semiconductor-based sensors deteriorates significantly due to passivation, and often by increased band gap caused by quantum confinement. Using first-principles density functional theory combined with Boltzmann transport calculations, we demonstrate semiconductor-like sensitivity toward chemical species in ultrathin gold nanowires (AuNWs). The sensing mechanism is governed by the modification of the electronic structure of the AuNW as well as scattering of the charge carriers by analyte adsorption. Most importantly, the sensitivity exhibits a linear relationship with the electron affinities of the respective analytes. Based on this relationship, we propose an empirical parameter, which can predict an analyte-specific sensitivity of a AuNW, rendering them as effective sensors for a wide range of chemical an alytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atombond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the pi-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.

First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.

Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.

Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O livro Contos de amor rasgados, de Marina Colasanti, foi publicado em 1986, década de consolidação das conquistas do movimento feminista (Pinto, 2003). O feminismo almejava uma mudança de mentalidade, mudança nas práticas sociais e nos discursos sobre a mulher (ibid.). Entretanto, a mulher nos contos é representada de forma peculiar, frustrando as expectativas de uma imagem positiva esperada de uma literatura produzida por uma autora feminista. Este estudo propõe a análise dos contos de Marina Colasanti, destacando algumas questões acerca da representação dos atores sociais em textos-contos que pretendem veicular um discurso de liberação da mulher. Para tanto, dez contos representativos do todo foram selecionados para compor o corpus e utilizou-se o sistema sociossemântico para a representação dos atores sociais proposto por van Leeuwen (1997) e a Linguística Sistêmico Funcional de Halliday (2004) como ferramentas de análise. Nosso enfoque é o da Análise Crítica do Discurso de Fairclough (1995), que tem dedicado seus estudos às mudanças sociais através dos discursos. Consideramos que o movimento feminista se inscreve em algumas mudanças. Nessa perspectiva, Bourdieu (2005) afirma que, apesar do movimento feminista, muito pouco mudou, prevalecendo, ainda, a dominação masculina e a violência simbólica. As categorias de van Leeuwen (op. cit.) da exclusão e inclusão dos atores sociais no discurso servem de instrumental para uma análise mais detalhada das relações homem-mulher, permitindo desvelar algumas questões feministas tematizadas nos contos, questões descritas por Pinto (op. cit.) e apontadas por Bourdieu (op. cit.). Os resultados da análise dos contos demonstram que a mulher ora está totalmente excluída, ora é representada como um pano de fundo (encobrimento), ora é enfraquecida (apassivada) em favor de seu marido/amante. Assim, os conflitos gerados a partir das ações do homem sobre a mulher nos contos confirmam certas preocupações do discurso feminista

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While photovoltaics hold much promise as a sustainable electricity source, continued cost reduction is necessary to continue the current growth in deployment. A promising path to continuing to reduce total system cost is by increasing device efficiency. This thesis explores several silicon-based photovoltaic technologies with the potential to reach high power conversion efficiencies. Silicon microwire arrays, formed by joining millions of micron diameter wires together, were developed as a low cost, low efficiency solar technology. The feasibility of transitioning this to a high efficiency technology was explored. In order to achieve high efficiency, high quality silicon material must be used. Lifetimes and diffusion lengths in these wires were measured and the action of various surface passivation treatments studied. While long lifetimes were not achieved, strong inversion at the silicon / hydrofluoric acid interface was measured, which is important for understanding a common measurement used in solar materials characterization.

Cryogenic deep reactive ion etching was then explored as a method for fabricating high quality wires and improved lifetimes were measured. As another way to reach high efficiency, growth of silicon-germanium alloy wires was explored as a substrate for a III-V on Si tandem device. Patterned arrays of wires with up to 12% germanium incorporation were grown. This alloy is more closely lattice matched to GaP than silicon and allows for improvements in III-V integration on silicon.

Heterojunctions of silicon are another promising path towards achieving high efficiency devices. The GaP/Si heterointerface and properties of GaP grown on silicon were studied. Additionally, a substrate removal process was developed which allows the formation of high quality free standing GaP films and has wide applications in the field of optics.

Finally, the effect of defects at the interface of the amorphous silicon heterojuction cell was studied. Excellent voltages, and thus efficiencies, are achievable with this system, but the voltage is very sensitive to growth conditions. We directly measured lateral transport lengths at the heterointerface on the order of tens to hundreds of microns, which allows carriers to travel towards any defects that are present and recombine. This measurement adds to the understanding of these types of high efficiency devices and may aid in future device design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sinais diversos estão presentes em nosso cotidiano, assim como nas medidas realizadas nas atividades de ciência e tecnologia. Dentre estes sinais, tem grande importância tecnológica aqueles associados à corrosão de estruturas metálicas. Assim, esta tese propõe o estudo de um esquema local de transformada de Fourier janelada, com a janela variando em função da curtose, aplicada a sinais de ruído eletroquímico. A curtose foi avaliada nos domínios do tempo e da frequência e processada pelo programa desenvolvido para esse fim. O esquema foi aplicado a sinais de ruído eletroquímico dos aços UNS S31600, UNS G10200 e UNS S32750 imersos em três soluções: FeCl3 0,1 mol=L (cloreto férrico), H2SO4 5%(ácido sulfúrico) e NaOH 0,1%(hidróxido de sódio). Para os aços inoxidáveis, estas soluções promovem corrosão localizada, uniforme e passivação, respectivamente. Visando testar o desempenho do esquema de Fourier desenvolvido, testes foram realizados utilizando-se inicialmente sinais sintéticos e em seguida sinais de ruído eletroquímico. Notou-se que os sinais têm características de não-estacionaridade e a maior parte da energia está presente em baixa frequência. Os intervalos de tempo e de frequência onde se concentra a maior parte da energia do sinal foram correlacionados. Para os picos máximos dos sinais de potencial e corrente obtidos de amperimetria de resistência nula, a correlação entre eles foi baixa, independente da forma de corrosão presente. Conclui-se que o método se adaptou bastante bem às características locais do sinal eletroquímico permitindo o monitoramento dos espectros tempo-frequência. O fato de ser sensível às características locais do sinal permite analisar aspectos dos sinais que do modo clássico não podem ser diretamente processados. O método da transformada de Fourier janelada variável (Variable Short-Time Fourier Transform - VSTFT) adaptou-se muito bem no monitoramento dos sinais originados de potencial de circuito aberto e amperimetria de resistência nula.