290 resultados para parametrice equazioni integro-differenziali


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente lavoro si colloca in un ampio percorso che ha visto diversi studi interessati nella problematica del traffico urbano, e quindi delle congestioni stradali, il cui impatto nella qualità della vita nelle grandi città è diventato sempre più rilevante con il processo di urbanizzazione. Dalle prime ricerche compiute, risalenti alla prima metà del 900, e aventi come oggetto di studio la singola strada, il ricorso alla modellizzazione matematica di recente si è sviluppato in particolar modo per quel che concerne la rete urbana. Le problematiche che si incontrano affrontando il contesto delle reti urbane si possono riassumere sinteticamente innanzitutto nella mutevolezza del flusso del traffico nell'arco della giornata. In secondo luogo nell'esistenza di punti critici variabili nel corso del tempo. Incidentalmente può accadere che si verifichino eventi eccezionali dovuti tanto all'ambiente naturale, quanto sociale. Ogni modello nella sua natura riduzionista consente di prendere in esame alcune problematiche specifiche e la scelta di operare in modo selettivo risponde alla complessità del fenomeno. Con queste indicazioni di metodo si è pensato di concentrarsi sullo studio degli effetti delle fluttuazioni endogene dei flussi di traffico in una stradale di tipo Manhattan. Per modellizzare il traffico utilizzeremo un sistema dinamico, nel quale la velocità ottimale si basa sulla relazione del Diagramma Fondamentale postulato da Greenshields (1935).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prima di fornire una formulazione esaustiva dell'onda d'urto, è d'uopo definire il gas come oggetto fisico e le sue principali caratteristiche. Quanto si farà nei paragrafi seguenti quindi, sarà tentare di formalizzare il sistema gassoso dal punto di vista fisico e matematico. Sarà necessario introdurre un modello del sistema (par. 1.1) che ci permetta di lavorare a livello statistico sull'insieme di particelle che lo compongono per caratterizzare le funzioni termodinamiche classiche come medie temporali. Tramite queste considerazioni si stabilirà quali sono le quantità che si conservano nel moto di un fluido e si vedrà che tali leggi di conservazione formano un sistema di 5 equazioni differenziali parziali in 6 incognite. Tramite la linearizzazione di questo sistema si individueranno delle soluzioni chiamate onde sonore che danno un'indicazione sul modo in cui si propagano delle perturbazioni all'interno di un fluido; in particolar modo saranno utili per la determinazione del numero di Mach che rende possibile la distinzione tra due regimi: subsonico e supersonico (par. 1.2). Sarà possibile, a questo punto, indagare il fenomeno dell'onda d'urto (par. 2.1) e, nel dettaglio, due casi particolarmente utili in contesto astrofisico quali: l'onda d'urto per un gas politropico (par. 2.2), un'onda d'urto sferica che avanza verso il suo centro (2.2). Lo scopo di questa trattazione è indagare, o se non altro tentare, quanto avviene in un'esplosione di Supernova (par. 3). Relativamente a questo fenomeno, ne viene data una classificazione sommaria (par. 3.1), mentre particolare attenzione sarà rivolta alle Supernovae di tipo Ia (par. 3.2) che grazie alla loro luminosità standard costituiscono un punto di riferimento nell'Universo visibile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi affronta il tema della neuromatematica della visione, in particolare l’integrazione di modelli geometrici di percezione visiva con tecniche di riduzione di dimensionalità. Dall’inizio del secolo scorso, la corrente ideologica della Gestalt iniziò a definire delle regole secondo le quali stimoli visivi distinti tra loro possono essere percepiti come un’unica unità percettiva, come ad esempio i principi di prossimità, somiglianza o buona continuazione. Nel tentativo di quantificare ciò che gli psicologi avevano definito in maniera qualitativa, Field, Hayes e Hess hanno descritto, attraverso esperimenti psicofisiologici, dei campi di associazione per stimoli orientati, che definiscono quali caratteristiche due segmenti dovrebbero avere per poter essere associati allo stesso gruppo percettivo. Grazie alle moderne tecniche di neuroimaging che consentono una mappatura funzionale dettagliata della corteccia visiva, è possibile giustificare su basi neurofisiologiche questi fenomeni percettivi. Ad esempio è stato osservato come neuroni sensibili ad una determinata orientazione siano preferenzialmente connessi con neuroni aventi selettività in posizione e orientazione coerenti con le regole di prossimità e buona continuazione. Partendo dal modello di campi di associazione nello spazio R^2xS^1 introdotto da Citti e Sarti, che introduce una giustificazione del completamento percettivo sulla base della funzionalità della corteccia visiva primaria (V1), è stato possibile modellare la connettività cellulare risolvendo un sistema di equazioni differenziali stocastiche. In questo modo si sono ottenute delle densità di probabilità che sono state interpretate come probabilità di connessione tra cellule semplici in V1. A queste densità di probabilità è possibile collegare direttamente il concetto di affinità tra stimoli visivi, e proprio sulla costruzione di determinate matrici di affinità si sono basati diversi metodi di riduzione di dimensionalità. La fenomenologia del grouping visivo descritta poco sopra è, di fatto, il risultato di un procedimento di riduzione di dimensionalità. I risultati ottenuti da questa analisi e gli esempi applicativi sviluppati si sono rivelati utili per comprendere più nel dettaglio la possibilità di poter riprodurre, attraverso l’analisi spettrale di matrici di affinità calcolate utilizzando i modelli geometrici di Citti-Sarti, il fenomeno percettivo di grouping nello spazio R^2xS^1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nell'elaborato si introduce il calcolo delle equazioni, un particolare linguaggio predicativo contenente come unico simbolo predicativo quello di uguaglianza. Vengono analizzate le funzioni derivabili in questo linguaggio: le funzioni ricorsive parziali e le funzioni ricorsive primitive. Si accenna al lambda-calcolo che è un particolare linguaggio con cui è possibile, per la sua semplicità, esprimere molte teorie, come quella del calcolo delle equazioni. Infine, si studiano i problemi legati alla ricorsività: il problema della fermata e il problema dell'indecidibilità della logica dei predicati.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella presente tesi sono riassunte le diverse posizioni epistemologiche riguardo alla relazione tra didattica e storia della matematica, insieme alle possibili funzioni di quest'ultima nell'attività scolastica. In particolare ci si è soffermati sull'opportunità di introdurre gli studenti ad un rapporto diretto con le fonti storiche. A tale scopo è stata condotta una sperimentazione in una classe di seconda Liceo, a cui sono stati proposti tre brani di diversi autori e secoli da esaminare in gruppo. Sono stati dettagliatamente descritti e successivamente analizzati i comportamenti messi in atto dagli studenti alla lettura delle fonti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi affronta il problema della risoluzione delle equazioni di tipo iconale, introducendo delle metodologie simplettiche, ovvero tramite l'uso di sottovarietà Lagrangiane. Si guarda nello specifico alla risoluzione dell'equazione agli autovalori di Schrödinger in una e più dimensioni, mostrando la tecnica approssimativa WKB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questa tesi è lo studio della risolubilità per radicali di equazioni polinomiali nel caso in cui il campo dei coefficienti del polinomio abbia caratteristica zero. Nel primo capitolo vengono richiamati i principali risultati riguardanti la teoria di Galois. Nel secondo capitolo si introducono le nozioni di gruppo risolubile e gruppo semplice analizzandone le proprietà. Nel terzo capitolo si definiscono le estensioni di campi radicali e risolubili. Viene inoltre dimostrato il teorema di Galois che mette in evidenza il legame tra gruppi risolubili ed estensioni risolubili. Infine, nell'ultimo capitolo, si applicano i risultati ottenuti al problema della risolubilità per radicali delle equazioni polinomiali dando anche diversi esempi. In particolare viene analizzato il caso del polinomio universale di grado n.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo della prima parte di questo elaborato è quello di mostrare come l'approccio geometrico, qui principalmente basato sull'algebra delle forme differenziali, possa semplificare la forma delle equazioni di Maxwell. Verificheremo che tutte le leggi dell'elettromagnetismo possono essere derivate da aspetti puramente geometrici e poi riconosciute come leggi fisiche imponendo le opportune restrizioni. Nella seconda parte trattiamo vari aspetti del monopolo magnetico. Prima lo introdurremo seguendo il percorso di Dirac, poi risolveremo analiticamente i problemi che esso presenta e alla fine inquadreremo i risultati che abbiamo ottenuto all'interno dell'algebra delle forme differenziali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi vengono studiati gli effetti della non-normalità di un operatore all'interno di sistemi dinamici regolati da sistemi di equazioni differenziali ordinarie. Viene studiata la stabilità delle soluzioni, in particolare si approfondiscono fenomeni quali le crescite transitorie. In seguito vengono forniti strumenti grafici come gli Pseudospettri capaci di scoprire e quantificare tali "anomalie". I concetti studiati vengono poi applicati alla teoria dell'ecologia delle popolazioni utilizzando una generalizzazione delle equazioni di Lotka-Volterra. Modelli e matrici vengono implementate in Matlab mentre i risultati grafici sono ottenuti con il Toolbox Eigtool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo studio di tesi che segue analizza un problema di controllo ottimo che ho sviluppato con la collaborazione dell'Ing. Stefano Varisco e della Dott.ssa Francesca Mincigrucci, presso la Ferrari Spa di Maranello. Si è trattato quindi di analizzare i dati di un controllo H-infinito; per eseguire ciò ho utilizzato i programmi di simulazione numerica Matlab e Simulink. Nel primo capitolo è presente la teoria dei sistemi di equazioni differenziali in forma di stato e ho analizzato le loro proprietà. Nel secondo capitolo, invece, ho introdotto la teoria del controllo automatico e in particolare il controllo ottimo. Nel terzo capitolo ho analizzato nello specifico il controllo che ho utilizzato per affrontare il problema richiesto che è il controllo H-infinito. Infine, nel quarto e ultimo capitolo ho specificato il modello che ho utilizzato e ho riportato l'implementazione numerica dell'algoritmo di controllo, e l'analisi dei dati di tale controllo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella prima sezione di questo lavoro verranno esposti i ragionamenti fisici alla base della scrittura delle equazioni di London-London (1935), capaci di descrivere due importanti fenomeni riguardanti i materiali superconduttori quali la conduttività perfetta (resistenza nulla) e il diamagnetismo perfetto (Effetto Meissner). Verrà in essa infine brevemente descritto l'effetto della più generale conservazione del flusso magnetico nei superconduttori secondo il modello classico. Nella seconda sezione verrà esposto il ragionamento alla base della scrittura del Modello Quantistico Macroscopico, proposto da F.London nel 1948 per cercare di unificare la descrizione elettrodinamica classica della superconduttività con la meccanica quantistica, attraverso la scrittura di una funzione d'onda macroscopica capace di descrivere l'intero ensemble di portatori di carica superelettronici nel loro moto di conduzione.Esso permetterà di prevedere il fenomeno della quantizzazione del flusso magnetico intrappolato da una regione superconduttrice molteplicemente connessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi viene presentato il metodo della parametrice, che è utilizzato per trovare la soluzione fondamentale di un operatore parabolico a coefficienti hölderiani. Inizialmente si introduce un operatore modello a coefficienti costanti, la cui soluzione fondamentale verrà utilizzata per approssimare quella dell’operatore parabolico. Questa verrà trovata esplicitamente sotto forma di serie di operatori di convoluzione con la soluzione fondamentale dell’operatore a coefficienti costanti. La prova di convergenza e regolarità della serie si basa sullo studio delle proprietà della soluzione fondamentale dell’operatore a coefficienti costanti e degli operatori di convoluzione utilizzati. Infine, si applicherà il metodo della parametrice per trovare la soluzione fondamentale di un’equazione di Fokker-Planck sempre a coefficienti hölderiani.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scopo di questo elaborato è studiare la risolubilità per radicali di un polinomio a coefficienti in un campo di caratteristica zero attraverso lo studio del gruppo di Galois del suo campo di spezzamento. Dopo aver analizzato alcuni risultati su gruppi risolubili e gruppi semplici, vengono studiate le estensioni radicali e risolubili. Viene inoltre dimostrato su un campo K di caratteristica zero il Teorema di Galois, che caratterizza i polinomi risolubili per radicali f a coefficienti in K attraverso la risolubilità del gruppo di Galois G(L/K), dove L è il campo di spezzamento di f. La tesi contiene anche un'esposizione sintetica del metodo introdotto da Lagrange per la risoluzione di equazioni polinomiali di cui si conosca il gruppo di Galois.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi sono stati descritti i principali metodi numerici per la risoluzione di sistemi non lineari. Tali metodi sono stati analizzati sia dal punto di vista teorico (analisi di convergenza locale) che pratico (algoritmo e implementazione).