824 resultados para parallel scheduling
Resumo:
Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems.
Resumo:
This paper presents a technique called Improved Squeaky Wheel Optimisation (ISWO) for driver scheduling problems. It improves the original Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by incorporating two additional steps of Selection and Mutation which implement evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The Analysis step first computes the fitness of a current solution to identify troublesome components. The Selection step then discards these troublesome components probabilistically by using the fitness measure, and the Mutation step follows to further discard a small number of components at random. After the above steps, an input solution becomes partial and thus the resulting partial solution needs to be repaired. The repair is carried out by using the Prioritization step to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, the optimisation in the ISWO is achieved by solution disruption, iterative improvement and an iterative constructive repair process performed. Encouraging experimental results are reported.
Resumo:
Abstract: This paper reports a lot-sizing and scheduling problem, which minimizes inventory and backlog costs on m parallel machines with sequence-dependent set-up times over t periods. Problem solutions are represented as product subsets ordered and/or unordered for each machine m at each period t. The optimal lot sizes are determined applying a linear program. A genetic algorithm searches either over ordered or over unordered subsets (which are implicitly ordered using a fast ATSP-type heuristic) to identify an overall optimal solution. Initial computational results are presented, comparing the speed and solution quality of the ordered and unordered genetic algorithm approaches.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.
Resumo:
Prince Maximilian zu Wied's great exploration of coastal Brazil in 1815-1817 resulted in important collections of reptiles, amphibians, birds, and mammals, many of which were new species later described by Wied himself The bulk of his collection was purchased for the American Museum of Natural History in 1869, although many ""type specimens"" had disappeared earlier. Wied carefully identified his localities but did not designate type specimens or type localities, which are taxonomic concepts that were not yet established. Information and manuscript names on a fraction (17 species) of his Brazilian reptiles and amphibians were transmitted by Wied to Prof. Heinrich Rudolf Schinz at the University of Zurich. Schinz included these species (credited to their discoverer ""Princ. Max."") in the second volume of Das Thierreich ... (1822). Most are junior objective synonyms of names published by Wied. However, six of the 17 names used by Schinz predate Wied's own publications. Three were manuscript names never published by Wied because he determined the species to be previously known. (1) Lacerta vittata Schinz, 1822 (a nomen oblitum) = Lacerta striata sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Kentropyx calcarata Spix, 1825, herein qualified as a nomen protectum. (2) Polychrus virescens Schinz, 1822 = Lacerta marmorata Linnaeus, 1758 (now Polychrus marmoratus). (3) Scincus cyanurus Schinz, 1822 (a nomen oblitum) = Gymnophthalmus quadrilineatus sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Micrablepharus maximiliani (Reinhardt and Lutken, ""1861"" [1862]), herein qualified as a nomen protectum. Qualifying Scincus cyanurus Schinz, 1822, as a nomen oblitum also removes the problem of homonymy with the later-named Pacific skink Scincus cyanurus Lesson (= Emoia cyanura). The remaining three names used by Schinz are senior objective synonyms that take priority over Wied's names. (4) Bufo cinctus Schinz, 1822, is senior to Bufo cinctus Wied, 1823; both, however, are junior synonyms of Bufo crucifer Wied, 1821 = Chaunus crucifer (Wied). (5) Agama picta Schinz, 1822, is senior to Agama picta Wied, 1823, requiring a change of authorship for this poorly known species, to be known as Enyalius pictus (Schinz). (6) Lacerta cyanomelas Schinz, 1822, predates Teius cyanomelas Wied, 1824 (1822-1831) both nomina oblita. Wied's illustration and description shows cyanomelas as apparently conspecific with the recently described but already well-known Cnemidophorus nativo Rocha et al., 1997, which is the valid name because of its qualification herein as a nomen protectum. The preceding specific name cyanomelas (as corrected in an errata section) is misspelled several ways in different copies of Schinz's original description (""cyanom las,"" ""cyanomlas,"" and cyanom""). Loosening, separation, and final loss of the last three letters of movable type in the printing chase probably accounts for the variant misspellings.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
This paper discusses the integrated design of parallel manipulators, which exhibit varying dynamics. This characteristic affects the machine stability and performance. The design methodology consists of four main steps: (i) the system modeling using flexible multibody technique, (ii) the synthesis of reduced-order models suitable for control design, (iii) the systematic flexible model-based input signal design, and (iv) the evaluation of some possible machine designs. The novelty in this methodology is to take structural flexibilities into consideration during the input signal design; therefore, enhancing the standard design process which mainly considers rigid bodies dynamics. The potential of the proposed strategy is exploited for the design evaluation of a two degree-of-freedom high-speed parallel manipulator. The results are experimentally validated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to verify the possibility to correlating specific gravity and wood hardness parallel and perpendicular to the grain. The purpose is to offer one more tool to help in the decision about wood species choice for use in floors and sleepers. To reach this intent, we considered the results of standard tests (NBR 7190:1997, Timber Structures Design, Annex B, Brazilian Association of Technical Standards) to determine hardness parallel and normal to the grain in fourteen tropical high density wood species (over 850 kg/m(3), at 12% moisture content). For each species twelve determinations were made, based on the material obtained at Sao Carlos and its regional wood market. Statistical analysis led to some expressions to describe the cited properties relationships, with a determination coefficient about 0.8.
Resumo:
This paper addresses the use of optimization techniques in the design of a steel riser. Two methods are used: the genetic algorithm, which imitates the process of natural selection, and the simulated annealing, which is based on the process of annealing of a metal. Both of them are capable of searching a given solution space for the best feasible riser configuration according to predefined criteria. Optimization issues are discussed, such as problem codification, parameter selection, definition of objective function, and restrictions. A comparison between the results obtained for economic and structural objective functions is made for a case study. Optimization method parallelization is also addressed. [DOI: 10.1115/1.4001955]
Resumo:
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through Unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was Concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to study the flow pattern in a plate heat exchanger (PHE) through residence time distribution (RTD) experiments. The tested PHE had flat plates and it was part of a laboratory scale pasteurization unit. Series flow and parallel flow configurations were tested with a variable number of passes and channels per pass. Owing to the small scale of the equipment and the short residence times, it was necessary to take into account the influence of the tracer detection unit on the RID data. Four theoretical RID models were adjusted: combined, series combined, generalized convection and axial dispersion. The combined model provided the best fit and it was useful to quantify the active and dead space volumes of the PHE and their dependence on its configuration. Results suggest that the axial dispersion model would present good results for a larger number of passes because of the turbulence associated with the changes of pass. This type of study can be useful to compare the hydraulic performance of different plates or to provide data for the evaluation of heat-induced changes that occur in the processing of heat-sensitive products. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Pipeline systems play a key role in the petroleum business. These operational systems provide connection between ports and/or oil fields and refineries (upstream), as well as between these and consumer markets (downstream). The purpose of this work is to propose a novel MINLP formulation based on a continuous time representation for the scheduling of multiproduct pipeline systems that must supply multiple consumer markets. Moreover, it also considers that the pipeline operates intermittently and that the pumping costs depend on the booster stations yield rates, which in turn may generate different flow rates. The proposed continuous time representation is compared with a previously developed discrete time representation [Rejowski, R., Jr., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers and Chemical Engineering, 28, 1511] in terms of solution quality and computational performance. The influence of the number of time intervals that represents the transfer operation is studied and several configurations for the booster stations are tested. Finally, the proposed formulation is applied to a larger case, in which several booster configurations with different numbers of stages are tested. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the minimization of the mean absolute deviation from a common due date in a two-machine flowshop scheduling problem. We present heuristics that use an algorithm, based on proposed properties, which obtains an optimal schedule fora given job sequence. A new set of benchmark problems is presented with the purpose of evaluating the heuristics. Computational experiments show that the developed heuristics outperform results found in the literature for problems up to 500 jobs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the non-preemptive single machine scheduling problem to minimize total tardiness. We are interested in the online version of this problem, where orders arrive at the system at random times. Jobs have to be scheduled without knowledge of what jobs will come afterwards. The processing times and the due dates become known when the order is placed. The order release date occurs only at the beginning of periodic intervals. A customized approximate dynamic programming method is introduced for this problem. The authors also present numerical experiments that assess the reliability of the new approach and show that it performs better than a myopic policy.