155 resultados para paleomagnetism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species of Globorotalia are among the most dissolution-resistant planktonic foraminifers in sediments of the inner wall of the Middle America Trench; parts of their Phylogenetic history have been recognized in sediments of Leg 107 (Glacon and Bourgois, 1985). These species can be integrated into the biostratigraphic scheme on the basis of calcareous and siliceous nannoplankton and calibrated on the basis of paleomagnetism (Keller, 1980, 1981; Keller et al., 1982; Barron and Keller, 1982). Data compiled for this data report extend to the southern area of occurrence of Globorotalia species. About 250 sediment samples were collected on board JOIDES Resolution and examined as follows: 20-cm**3 samples were dried for 8 hr at 60°C, weighed, and then washed through sieves of 0.5, 0.2, 0.125, and 0.063 mm mesh size. The residues were dried and reweighed. The abundance of planktonic foraminifers counted is reported as numbers of specimens per weight of the original sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the azimuth of bottom-current flow in drift deposit sediments recovered at ODP Sites 1095 and 1101, Antarctic Peninsula, using paleomagnetic reorientation of anisotropy of magnetic susceptibility (AMS) ellipsoids. A total of 38 cores from the two ODP sites have been measured, providing spatial and directional information on the physical record of the ACC (Antarctic Circumpolar Current) in the Plio-Pleistocene. Declination and inclination of the paleomagnetic vector of each core segment were used to reorient the AMS principal axes to the geographic coordinates. The cores were reoriented using the measured direction of the characteristic remanent magnetization (ChRM) with respect to a common reference line for the core, from which we are able to determine the orientation of the paleocurrent flow for Sites 1095 (Drift 7) and 1101 (Drift 4) relative to the geographic coordinates. Both sites have paleocurrent directions trending ~NW-SE, which in the former locality are parallel to a sediment wave field. Our study shows that a combination of magnetic fabric analysis and paleomagnetism allows deep-sea sedimentary fabric to be used as a long-term proxy of bottom-current flow history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program Legs 152 and 163, we recovered core from the offshore East Greenland volcanic province. The basaltic core recovered included a set of structural elements reflecting the history of extrusion, cooling, postdeposition alteration, and minor tectonism. Brittle features in the basaltic core include faults and several generations of veins. Several minicore samples from the lower sections of core from Hole 917A were taken for paleomagnetic analysis, primarily to test whether there were any significant postdepositional tectonic rotations or whether the core could be reoriented using paleomagnetic techniques. The characteristic magnetization direction was used to estimate the in situ orientation of measured structural features within the core. Although significant uncertainty is associated with the analysis, the corrected attitudes of veins in basalt at Site 917 dip moderately west, with a smaller, conjugate group of veins dipping moderately east-southeast, parallel to other seaward-dipping faults in the area, which were interpreted from seismic lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cretaceous basalts have been recovered at several Ocean Drilling Program and Deep Sea Drilling Project sites where basement of Jurassic age was predicted. Sites 800 and 802, Leg 129, both fall in this category. We have examined the paleomagnetic properties of 25 basalt samples from Site 802 in order to establish a paleolatitude for the site at the time of basalt emplacement and to compare the results to those from Deep Sea Drilling Project Site 462. Mean natural remanent magnetization intensity for the Site 802 basalts was found to be approximately 12 A/m consistent with typical oceanic basalts. Mean stable inclination is -34.7° ± 2.2 which implies a paleolatitude of approximately 19.4°S. This is very similar to the paleolatitudes calculated for Site 462 basalts and suggests - along with similarities in geochemistry, magnetic properties, and projected age of Site 802 basalt emplacement - both contemporaneity of and a possible source link between the two sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study are twofold. First, the study tries to provide the most reliable chronology possible for two critical sections by correlating the magnetic polarity stratigraphy measured in these sediments with a newly revised geomagnetic polarity time scale. Second, this study attempts to examine in detail the nature of seven short events not included in the shipboard standard time scale, but for which abundant magnetostratigraphic evidence was obtained during the Leg. Data presented here force some modifications of the shipboard interpretations of the magnetostratigraphy of Sites 845 and 844 on the basis of new data generated using discrete samples and from a greater appreciation of the magnetostratigraphic signature of Miocene-age short events. Those short events can be classified into two groups: those that probably reflect short, full-polarity intervals and those that more likely represent an interval of diminished geomagnetic intensity. Three of the seven events documented here correspond well with three subtle features, as seen in marine magnetic profiles, that have been newly included in the geomagnetic polarity time scale as short, full-polarity chrons. One of the seven events corresponds to a poorly defined feature of the marine magnetic record that has also been newly included in the geomagnetic polarity time scale, but which was considered of enigmatic origin. The three remaining events investigated here, although they have not been identified with features in the seafloor magnetic record, are suggested to be events of a similar nature, most likely times of anomalously low geomagnetic intensity. In addition to the Miocene magnetostratigraphic results given, several sets of averaged paleomagnetic inclinations are presented. Although these results clearly show the effects of a residual coring overprint, they demonstrate that paleomagnetic estimates of paleolatitudes can be made which are in good general agreement with ancient site positions calculated using hot spot-based plate reconstructions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 188 of the Ocean Drilling Program (ODP), employing JOIDES Resolution, we drilled holes at three sites in the southern Indian Ocean in and near Prydz Bay, East Antarctica, between 28 January and 29 February 2000. The objectives of the voyage were to: - Core through sediments deposited when Antarctica underwent the transition from "greenhouse" to the modern "icehouse" state late in the Eocene or early in the Oligocene, at sites obtaining their sediment from the currently subglacial Gamburtsev Mountains that probably were the site of nucleation of the ice sheet (principally Site 1166); - Obtain a sediment record from times at which major changes in the ice sheet volume and characteristics took place as judged from oxygen isotope records, especially at ~23.7 Ma (Oligocene/Miocene boundary), 12-16 Ma (middle Miocene), and 2.7 Ma (late Pliocene) (mainly Site 1165); and - Sample through the upper Pliocene and Quaternary in an attempt to document fluctuations in the extent of the ice sheet over the continental shelf during the Quaternary (especially Site 1167). Paleogene foraminifer-bearing marine sections were not intersected, and thus discussion of marine sections is restricted to the Neogene. Foraminifers are not major contributors to Leg 188 chronostratigraphy but contribute to paleoenvironmental interpretation, to issues such as carbonate compensation depth (CCD) effects and source and history of sediment, and provide a basis for Sr and d18O studies. Chronostratigraphy for the various sections was compiled from diatoms, radiolarians, and paleomagnetism (Shipboard Scientific Party, 2001, doi:10.2973/odp.proc.ir.188.101.2001). Foraminifers were sporadic rather than continuous except in short intervals; however, the Neogene foraminifers from the region are very poorly known and the new records proved to be of significant value in paleoenvironmental interpretation. Only at Site 1167 did drilling intersect a section that yielded foraminifers virtually throughout. Other than for the very young section at each site, there is virtually no continuity of assemblages between sites and thus each section is treated here as separate and unrelated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inclination patterns of natural remanent magnetization (NRM) in Quaternary sediment cores from the Arctic Ocean have been widely used for stratigraphic correlation and the construction of age models, however, shallow and negative NRM inclinations in sediments deposited during the Brunhes Chron in the Arctic Ocean appear to have a partly diagenetic origin. Rock magnetic and mineralogical studies demonstrate the presence of titanomagnetite and titanomaghemite. Thermal demagnetization of the NRM indicates that shallow and negative inclination components are largely "unblocked" below ~300 °C, consistent with a titanomaghemite remanence carrier. Following earlier studies on the Mendeleev-Alpha Ridge, shallow and negative NRM inclination intervals in cores from the Lomonosov Ridge and Yermak Plateau are attributed to partial self-reversed chemical remanent magnetization (CRM) carried by titanomaghemite formed during seafloor oxidation of host (detrital) titanomagnetite grains. Distortion of paleomagnetic records due to seafloor maghemitization appears to be especially important in the perennially ice covered western (Mendeleev-Alpha Ridge) and central Arctic Ocean (Lomonosov Ridge) and, to a lesser extent, near the ice edge (Yermak Plateau). On the Yermak Plateau, magnetic grain size parameters mimic the global benthic oxygen isotope record back to at least marine isotope stage 6, implying that magnetic grain size is sensitive to glacial-interglacial changes in bottom-current velocity and/or detrital provenance.