875 resultados para out-of-sample forecast
Resumo:
Conferência apresentada na 52nd. Kentucky Foreign Language Conference (Universidade de Kentucky, Lexington, USA, 22-24 de Abril de 1999) com o apoio da Fundação Luso-Americana para o Desenvolvimento.
Resumo:
An 80 years old man suffered a cardiac arrest shortly after arrival to his local health department. Basic Life Support was started promptly and nine minutes later, on evaluation by an Advanced Life Support team, the victim was defibrillated with a 200J shock. When orotracheal intubation was attempted, masseter muscle contraction was noticed: on reevaluation, the victim had pulse and spontaneous breathing.Thirty minutes later, the patient had been transferred to an emergency department. As he complained of chest pain, the ECG showed a ST segment depression in leads V4 to V6 and laboratory tests showed cardiac troponine I slightly elevated. A coronary angiography was performed urgently: significant left main plus three vessel coronary artery disease was disclosed.Eighteen hours after the cardiac arrest, a quadruple coronary artery bypass grafting operation was undertaken. During surgery, a fresh thrombus was removed from the middle left anterior descendent artery. Post-operative course was uneventful and the patient was discharged seven days after the procedure. Twenty four months later, he remains asymptomatic.In this case, the immediate call for the Advanced Life Support team, prompt basic life support and the successful defibrillation, altogether, contributed for the full recovery. Furthermore, the swiftness in the detection and treatment of the acute reversible cause (myocardial ischemia in this case) was crucial for long-term prognosis.
Resumo:
Although the issue of the out-of-plane response of unreinforced masonry structures under earthquake excitation is well known with consensus among the research community, this issue is simultaneously one of the more complex and most neglected areas on the seismic assessment of existing buildings. Nonetheless, its characterization should be found on the solid knowledge of the phenomenon and on the complete understanding of methodologies currently used to describe it. Based on this assumption, this article presents a general framework on the issue of the out-of-plane performance of unreinforced masonry structures, beginning with a brief introduction to the topic, followed by a compact state of art in which the principal methodologies proposed to assess the out-of-plane behavior of unreinforced masonry structures are presented. Different analytical approaches are presented, namely force and displacement-based, complemented with the presentation of existing numerical tools for the purpose presented above. Moreover, the most relevant experimental campaigns carried out in order to reproduce the phenomenon are reviewed and briefly discussed.
Resumo:
During the last years, several studies have been made aiming to assess the out-of-plane seismic response of unreinforced stone masonry structures. This fact led to the development of a wide variety of models and approaches, ranging from simple kinematic based analytical models up to complex numerical simulations. Nevertheless, for the sake of simplicity, the out-of-plane seismic response of a masonry wall pier may be obtained by means of a simple single-degree-of-freedom system while still providing good results. In fact, despite the assumptions associated with such a simple formulation, it is also true that the epistemic uncertainty inherent with the selection of appropriate input parameters in more complex models may render them truly ineffective. In this framework, this paper focuses on the study of the out-of-plane bending of unreinforced stone masonry walls (cantilevers) by proposing a simplified analytical approach based on the construction of a linearized four-branch model, which is used to characterize the linear and nonlinear response of such structural elements through an overturning moment-rotation relationship. The formulation of the four-branch model is presented and described in detail and the meaningful parameters used for its construction are obtained from a set of experimental laboratory tests performed on six full-scale unreinforced regular sacco stone masonry specimens. Moreover, a parametric analysis aiming to evaluate the effect of these parameters’ variation on the final configuration of the model is presented and critically discussed. Finally, the results obtained from the application of the developed four-branch model on real unreinforced regular sacco stone masonry walls are thoroughly analysed and the main conclusions obtained from its application are summarized.
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
This paper analyzes the in-, and out-of sample, predictability of the stock market returns from Eurozone’s banking sectors, arising from bank-specific ratios and macroeconomic variables, using panel estimation techniques. In order to do that, I set an unbalanced panel of 116 banks returns, from April, 1991, to March, 2013, to constitute equal-weighted country-sorted portfolios representative of the Austrian, Belgian, Finish, French, German, Greek, Irish, Italian, Portuguese and Spanish banking sectors. I find that both earnings per share (EPS) and the ratio of total loans to total assets have in-sample predictive power over the portfolios’ monthly returns whereas, regarding the cross-section of annual returns, only EPS retain significant explanatory power. Nevertheless, the sign associated with the impact of EPS is contrarian to the results of past literature. When looking at inter-yearly horizon returns, I document in-sample predictive power arising from the ratios of provisions to net interest income, and non-interest income to net income. Regarding the out-of-sample performance of the proposed models, I find that these would only beat the portfolios’ historical mean on the month following the disclosure of year-end financial statements. Still, the evidence found is not statistically significant. Finally, in a last attempt to find significant evidence of predictability of monthly and annual returns, I use Fama and French 3-Factor and Carhart models to describe the cross-section of returns. Although in-sample the factors can significantly track Eurozone’s banking sectors’ stock market returns, they do not beat the portfolios’ historical mean when forecasting returns.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.