823 resultados para optically active quinolizidines


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A presente tese trata das reações de sulfanilação de algumas 2-sulfinilciclanonas racêmicas pelo método de catálise por transferência de fase (CTF), seja usando cloreto de benziltrietilamônio (TEBAC) seja usando catalisador quirálico. As reações de sulfanilação pelo método de CTF empregando TEBAC, forneceram produtos sulfanilados em altos rendimentos (75-93%), enquanto que as reações empregando a mesma metodologia, utilizando catalisadores quirálicos, conduziram não só a altos rendimentos, mas também a um aumento no excesso diastereomérico. Foram determinadas as configurações relativas da 2metilsulfanil- 2-metilsulfinilciclopentanona e 2-p-tolilsulfanil-2metilsulfinilcicloexanona pela análise de difração de Raios-X como sendo 2S*SS*. A parte final da Tese contém reações de sulfanilação da 2-metilsulfinilciclopentanona e 2-metilsulfinilcicloexanona opticamente ativas. É digno de nota que estas, ao contrário da 2-p-tolilsulfinil ciclanonas, descritas na literatura, conduziram a produtos sulfanilados estáveis. Finalmente, a tese mostra um exemplo de condensação aldólica assimétrica partindo da 2-metilsulfanil-2-metilsulfinilcicloexanona opticamente ativa. Com base no conhecimento da configuração deste último composto, foi possível esclarecer o mecanismo da indução assimétrica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that a quasi-two dimensional condensate of optically active excitons emits coherent light even in the absence of population inversion. This allows an unambiguous and clear experimental detection of the condensed phase. We prove that, due to the exciton–photon coupling, quantum and thermal fluctuations do not destroy condensation at finite temperature. Suitable conditions to achieve condensation are temperatures of a few K for typical exciton densities and the use of a pulsed and preferably circularly polarized, laser.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the electronic structure of a heterojunction made of two monolayers of MoS2 and WS2. Our first-principles density functional calculations show that, unlike in the homogeneous bilayers, the heterojunction has an optically active band gap, smaller than the ones of MoS2 and WS2 single layers. We find that the optically active states of the maximum valence and minimum conduction bands are localized on opposite monolayers, and thus the lowest energy electron-holes pairs are spatially separated. Our findings portray the MoS2-WS2 bilayer as a prototypical example for band-gap engineering of atomically thin two-dimensional semiconducting heterostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum-confined systems are one of the most promising ways to enable us to control a material's interactions with light. Nanorods in particular offer the right dimensions for exploring and manipulating the terahertz region of the spectrum. In this thesis, we model excitons confined inside a nanorod using the envelope function approximation. A region-matching transfer matrix method allows us to simulate excitonic states inside arbitrary heterostructures grown along the length of the rod. We apply the method to colloidal CdSe rods 70 nm in length and under 10 nm in diameter, capped with ligands of DDPA and pyridine. We extend past studies on these types of rods by taking into account their dielectric permittivity mismatch. Compared to previous calculations and experimentally measured terahertz absorption, we predict a higher energy main 1S$z$ to 2P$z$ transition peak. This indicates that the rods are likely larger in diameter than previously thought. We also investigate a nanorod with GaAs/Al$_{0.3}$Ga$_{0.7}$As coupled double dots. The excitonic transitions were found to be manipulable by varying the strength of an applied electric field. We employ quasi-static state population distributions to simulate the effects of exciton relaxation from optically active states to dim ground states. A critical value of the applied field, corresponding to the exciton binding energy of ~18 meV, was found to dramatically alter the terahertz absorption due to state mixing. Above this critical field, more nuanced shifts in transition energies were observed, and gain from radiative relaxation to the ground state is predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the quantum decoherence of Forster resonant energy transfer between two optically active molecules can be described by a spin-boson model. This allows us to give quantitative criteria that are necessary for coherent quantum oscillations of excitations between the chromophores. Experimental tests of our results should be possible with flourescent resonant energy transfer (FRET) spectroscopy. Although we focus on the case of protein-pigment complexes our results are also relevant to quantum dots and organic molecules in a dielectric medium. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antioxidant property of myo-inositol hexakisphosphate is important in the prevention of hydroxyl radical formation which may allow it to act as a 'safe' carrier of iron within the cell. Here, the hypothesis that the recently discovered natural product, myo-inositol 1,2,3-trisphosphate represents the simplest structure to mimic phytate's antioxidant activity has been tested. The first synthesis of myo-inositol 1,2,3-trisphosphate has been completed, along with its X-ray structure determination and that of key synthetic intermediates. Iron binding studies of myo-inositol 1,2,3-trisphosphate demonstrated that phosphate groups with the equatorial-axial-equatorial conformation are required for complete inhibition of hydroxyl radical formation. myo-Inositol monophosphatase is a key enzyme in recycling myo-inositol from its monophosphates in the brain and its inhibition is implicated in lithium's antimanic properties. Current synthetic strategies require inositol compounds to be protected (often with more than one group), resolved, phosphorylated and deprotected to produce the desired optically active myo-inositol phosphates. Here, the synthesis of myo-inositol 3-phosphate has been achieved in only 4 steps from myo-inositol. The stereoselective addition of the chiral phosphorylating agent (2R,4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one to a protected inositol intermediate allowed separation of diastereoisomers and easy deprotection to myo-inositol 3-phosphate. This strategy also allows the possible introduction of labels of oxygen and sulphur to give a thiophosphate of known stereochemistry at phosphorus which would be useful for the analysis of the stereochemical course of phosphate hydrolysis catalysed by inositol monophosphatase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review discusses synthesis of enantiopure sulfoxides through the asymmetric oxidation of prochiral sulfides. The use of metal complexes to promote asymmetric sulfoxidation is described in detail, with a particular emphasis on the synthesis of biologically active sulfoxides. The use of non-metal-based systems, such as oxaziridines, chiral hydroperoxides and peracids, as well as enzyme-catalyzed sulfoxidations is also examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composition and concentration of colored dissolved organic matter (CDOM) have been determined in Hudson Bay and Hudson Strait by excitation emission matrix spectroscopy (EEM) and parallel factor analysis (PARAFAC). Based on 63 surface samples, PARAFAC identified three fluorescent components, which were attributed to two humic- and one protein-like components. One humic-like component was identified as representing terrestrial organic matter and showed a conservative behaviour in Hudson Bay estuaries. The second humic-like component, traditionally identified as peak M, originated both from land and produced in the marine environment. Component 3 had spectra resembling protein-like material and thought to be plankton-derived. The distribution and composition of CDOM were largely controlled by water mass mixing with protein-like component being the least affected. Distinctive fluorescence patterns were also found between Hudson Bay and Hudson Strait, suggesting different sources of CDOM. The optically active fraction of DOC (both absorbing and fluorescing) was very high in the Hudson Bay (up to 89%) suggesting that fluorescence and absorbance can be used as proxies of the DOC concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The possibility to control molar mass and termination of the growing chain is fundamental to create well-defined, reproducible materials. For this reason, in order to apply polydithienopyrrole (PDTP) as organic conjugated polymer, the possibility of controlled polymerization needs to be verified. Another aspect that is still not completely explored is bound to the optical activity of the PDTP, which bearing appropriate substituents may adopt a helical conformation. The configuration of the helix, built up from achiral co-monomers, can be established in an enantiopure way by using only a small percentage of the chiral monomer co-polymerized with achiral co-monomer. The effect, called “sergeants and soldiers effect”, is expressed by the nonlinear increase of the chiral response vs the ratio of the chiral co-monomer used for the polymerization. To date, this effect is still not completely explored for PDTP. In this framework the project will investigate, firstly, the possibility to obtain a controlled polymerization of PDTP. Then, monomers with different side chains and organometallic functions will be screened for a CTCP-type polymerization. Also a Lewis-acid based cationic polymerization will be performed. Moreover the chemical derivatization of dithienopyrrole DTP is explored: the research is going to concern also block copolymers, built up by DTP and monomers of different nature. The research will be extended also to the investigation of optically active derivates of PDTP, using a chiral monomer for the synthesis. The possibility to develop a supramolecular distribution of the polymeric chains, together with the “sergeants and soldiers effect” will be checked investigating a series of polymers with increasing amounts of chiral monomer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is based on the integration of traditional and innovative approaches aimed at improving the normal faults seimogenic identification and characterization, focusing mainly on slip-rate estimate as a measure of the fault activity. The L’Aquila Mw 6.3 April 6, 2009 earthquake causative fault, namely the Paganica - San Demetrio fault system (PSDFS), was used as a test site. We developed a multidisciplinary and scale‐based strategy consisting of paleoseismological investigations, detailed geomorphological and geological field studies, as well as shallow geophysical imaging and an innovative application of physical properties measurements. We produced a detailed geomorphological and geological map of the PSDFS, defining its tectonic style, arrangement, kinematics, extent, geometry and internal complexities. The PSDFS is a 19 km-long tectonic structure, characterized by a complex structural setting and arranged in two main sectors: the Paganica sector to the NW, characterized by a narrow deformation zone, and the San Demetrio sector to SE, where the strain is accommodated by several tectonic structures, exhuming and dissecting a wide Quaternary basin, suggesting the occurrence of strain migration through time. The integration of all the fault displacement data and age constraints (radiocarbon dating, optically stimulated luminescence (OSL) and tephrochronology) helped in calculating an average Quaternary slip-rate representative for the PSDFS of 0.27 - 0.48 mm/yr. On the basis of its length (ca. 20 km) and slip per event (up to 0.8 m) we also estimated a max expected Magnitude of 6.3-6.8 for this fault. All these topics have a significant implication in terms of surface faulting hazard in the area and may contribute also to the understanding of the PSDFS seismic behavior and of the local seismic hazard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tilted fiber Bragg grating (TFBG) was integrated as the dispersive element in a high performance biomedical imaging system. The spectrum emitted by the 23 mm long active region of the fiber is projected through custom designed optics consisting of a cylindrical lens for vertical beam collimation and successively by an achromatic doublet onto a linear detector array. High resolution tomograms of biomedical samples were successfully acquired by the frequency domain OCT-system. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 10.2 μm lateral resolution. The miniaturization reduces costs and has the potential to further extend the field of application for OCT-systems in biology, medicine and technology. © 2014 SPIE.