983 resultados para offshore active fault


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the first attempt to constrain the evolution of the North Anatolian Fault Zone (NAFZ) by age dating and isotope tracing of clay minerals formed during near-surface faulting. Extensive illitic clay mineralisation occurred along the NAFZ related to hydrothermal alteration of the fault gouges and pseudotachylytes. Samples representing the pre-fault protoliths outside the fault zone do not contain authigenic illitic clay minerals indicating that hydrothermal processes were confined to the areas within the fault zone. K-Ar age data indicate that the hydrothermal system and the associated illite authigenesis initiated at similar to 57 Ma. This process is interpreted to reflect the onset of significant strike-slip or transtensional faulting immediately after the continental collision related to the closure of the Neotethys Ocean. Following the initiation of the fault movements in the latest Paleocene-Early Eocene, displacements along the NAFZ have continued, with probably intensified fault activities at similar to 26 Ma and later than similar to 8 Ma. Oxygen isotope compositions of the illitic clays from different locations along the NAFZ are similar, with narrow ranges in delta O-18 values indicating clay precipitation from fluids with similar oxygen isotope compositions and crystallisation temperatures. The delta O-18 and delta D values of the calculated fluid isotopic composition (delta O-18=5.9 parts per thousand to 11.2 parts per thousand, delta D=-59 parts per thousand to -73 parts per thousand) are consistent with metamorphic and magmatic origin of fluids mobilised during active tectonism. The interpretation of the fluid flow history of the NAFZ is in agreement with that reported previously for some well-known large-scale high-angle fault zones, which similarly developed along collisional-type orogenic belts and are commonly associated with significant mesothermal ore mineralisation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multiterminal dc wind farm is a promising topology with a voltage-source inverter (VSI) connection at the onshore grid. Voltage-source converters (VSCs) are robust to ac-side fault conditions. However, they are vulnerable to dc faults on the dc side of the converter. This paper analyzes dc faults, their transients, and the resulting protection issues. Overcurrent faults are analyzed in detail and provide an insight into protection system design. The radial wind farm topology with star or string connection is considered. The outcomes may be applicable for VSCs in the multi-VSC dc wind farm collection grid and VSC-based high-voltage direct current (HVDC) offshore transmission systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Padul-Nigüelas Fault Zone (PNFZ) is situated at the south-western mountain front of the Sierra Nevada (Spain) in an extensive regime and belongs to the internal zone of the Betic Cordilleras. The aim of this study is a collection of new evidence for neotectonic activity of the fault zone with classical geological field work and modern geophysical methods, such as ground penetrating radar (GPR). Among an apparently existing bed rock fault scarp with triangular facets, other evidences, such as deeply incised valleys and faults in the colluvial wedges, are present in the PNFZ. The preliminary results of our recent field work have shown that the synsedimentary faults within the colluvial sediments seem to propagate basinwards and the bed rock fault is only exhumed due to erosion for the studied segment (west of Marchena). We will use further GPR data and geomorphologic indices to gather further evidences of neotectonic activity of the PNFZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stratigraphic architecture of deep sea depositional systems has been discussed in detail. Some examples in Ischia and Stromboli volcanic islands (Southern Tyrrhenian sea, Italy) are here shown and discussed. The submarine slope and base of slope depositional systems represent a major component of marine and lacustrine basin fills, constituting primary targets for hydrocarbon exploration and development. The slope systems are characterized by seven seismic facies building blocks, including the turbiditic channel fills, the turbidite lobes, the sheet turbidites, the slide, slump and debris flow sheets, lobes and tongues, the fine-grained turbidite fills and sheets, the contourite drifts and finally, the hemipelagic drapes and fills. Sparker profiles offshore Ischia are presented. New seismo-stratigraphic evidence on buried volcanic structures and overlying Quaternary deposits of the eastern offshore of the Ischia Island are here discussed to highlight the implications on marine geophysics and volcanology. Regional seismic sections in the Ischia offshore across buried volcanic structures and debris avalanche and debris flow deposits are here presented and discussed. Deep sea depositional systems in the Ischia Island are well developed in correspondence to the Southern Ischia canyon system. The canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia bank. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited from a NE-SW trending (counter-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. High resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording seismic active data and tomography of the Stromboli Island are here presented. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area, compared to volcanologic setting of the Aeolian volcanic complex. The Stromboli DEM gives information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the geology of the Aeolian Arc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TOMO-ETNA experiment was devised to image of the crust underlying the volcanic edifice and, possibly, its plumbing system by using passive and active refraction/reflection seismic methods. This experiment included activities both on-land and offshore with the main objective of obtaining a new high-resolution seismic tomography to improve the knowledge of the crustal structures existing beneath the Etna volcano and northeast Sicily up to Aeolian Islands. The TOMO ETNA experiment was divided in two phases. The first phase started on June 15, 2014 and finalized on July 24, 2014, with the withdrawal of two removable seismic networks (a Short Period Network and a Broadband network composed by 80 and 20 stations respectively) deployed at Etna volcano and surrounding areas. During this first phase the oceanographic research vessel “Sarmiento de Gamboa” and the hydro-oceanographic vessel “Galatea” performed the offshore activities, which includes the deployment of ocean bottom seismometers (OBS), air-gun shooting for Wide Angle Seismic refraction (WAS), Multi-Channel Seismic (MCS) reflection surveys, magnetic surveys and ROV (Remotely Operated Vehicle) dives. This phase finished with the recovery of the short period seismic network. In the second phase the Broadband seismic network remained operative until October 28, 2014, and the R/V “Aegaeo” performed additional MCS surveys during November 19-27, 2014. Overall, the information deriving from TOMO-ETNA experiment could provide the answer to many uncertainties that have arisen while exploiting the large amount of data provided by the cutting-edge monitoring systems of Etna volcano and seismogenic area of eastern Sicily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing