835 resultados para objective refraction
Resumo:
CONTEXT: Identifying current physical activity levels and sedentary time of preschool children is important for informing government policy and community initiatives. This paper reviewed studies reporting on physical activity and time spent sedentary among preschool-aged children (2-5 years) using objective measures. EVIDENCE ACQUISITION: Databases were searched for studies published up to and including April 2013 that reported on, or enabled the calculation of, the proportion of time preschool children spent sedentary and in light- and moderate to vigorous-intensity physical activity. A total of 40 publications met the inclusion criteria for physical activity and 31 met the inclusion criteria for sedentary time. Objective measures included ActiGraph, Actiwatch, Actical, Actiheart, and RT3 accelerometers, direct observation, and Quantum XL telemetry heart rate monitoring. Data were analyzed in May 2013. EVIDENCE SYNTHESIS: Considerable variation in prevalence estimates existed. The proportion of time children spent sedentary ranged from 34% to 94%. The time spent in light-intensity physical activity and moderate to vigorous-intensity physical activity ranged from 4% to 33% and 2% to 41%, respectively. CONCLUSIONS: The considerable variation of prevalence estimates makes it difficult to determine the "true" prevalence of physical activity and sedentary time in preschool children. Future research should aim to reduce inconsistencies in the employed methodologies to better understand preschoolers' physical activity levels and sedentary behavior.
Resumo:
Purpose:Race appears to be associated with myopiogenesis, with East Asians showing high myopia prevalence. Considering structural variations in the eye, it is possible that retinal shapes are different between races. The purpose of this study was to quantify and compare retinal shapes between racial groups using peripheral refraction (PR) and peripheral eye lengths (PEL). Methods:A Shin-Nippon SRW5000 autorefractor and a Haag-Streit Lenstar LS900 biometer measured PR and PEL, respectively, along horizontal (H) and vertical (V) fields out to ±35° in 5° steps in 29 Caucasian (CA), 16 South Asian (SA) and 23 East Asian (EA) young adults (spherical equivalent range +0.75D to –5.00D in all groups). Retinal vertex curvature Rv and asphericity Q were determined from two methods: a) PR (Dunne): The Gullstrand-Emsley eye was modified according to participant’s intraocular lengths and anterior cornea curvature. Ray-tracing was performed at each angle through the stop, altering cornea asphericity until peripheral astigmatism matched experimental measurements. Retinal curvature and hence retinal co-ordinate intersection with the chief ray were altered until sagittal refraction matched its measurement. b) PEL: Ray-tracing was performed at each angle through the anterior corneal centre of curvature of the Gullstrand-Emsley eye. Ignoring lens refraction, retinal co-ordinates relative to the fovea were determined from PEL and trigonometry. From sets of retinal co-ordinates, conic retinal shapes were fitted in terms of Rv and Q. Repeated-measures ANOVA were conducted on Rv and Q, and post hoc t-tests with Bonferroni correction were used to compare races. Results:In all racial groups both methods showed greater Rv for the horizontal than for the vertical meridian and greater Rv for myopes than emmetropes. Rv was greater in EA than in CA (P=0.02), with Rv for SA being intermediate and not significantly different from CA and EA. The PEL method provided larger Rv than the PR method: PEL: EA vs CA 87±13 vs 83±11 m-1 (H), 79±13 vs 72±14 m-1 (V); PR: EA vs CA 79±10 vs 67±10 m-1 (H), 71±17 vs 66±12 m-1 (V). Q did not vary significantly with race. Conclusions:Estimates of Rv, but not of Q, varied significantly with race. The greater Rv found in EA than in CA and the comparatively high prevalence rate of myopia in many Asian countries may be related.
Resumo:
This paper presents a performance-based optimisation approach for conducting trade-off analysis between safety (roads) and condition (bridges and roads). Safety was based on potential for improvement (PFI). Road condition was based on surface distresses and bridge condition was based on apparent age per subcomponent. The analysis uses a non-monetised optimisation that expanded upon classical Pareto optimality by observing performance across time. It was found that achievement of good results was conditioned by the availability of early age treatments and impacted by a frontier effect preventing the optimisation algorithm from realising of the long-term benefits of deploying actions when approaching the end of the analysis period. A disaggregated bridge condition index proved capable of improving levels of service in bridge subcomponents.
Resumo:
Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.
Resumo:
This paper discusses three different ways of applying the single-objective binary genetic algorithm into designing the wind farm. The introduction of different applications is through altering the binary encoding methods in GA codes. The first encoding method is the traditional one with fixed wind turbine positions. The second involves varying the initial positions from results of the first method, and it is achieved by using binary digits to represent the coordination of wind turbine on X or Y axis. The third is the mixing of the first encoding method with another one, which is by adding four more binary digits to represent one of the unavailable plots. The goal of this paper is to demonstrate how the single-objective binary algorithm can be applied and how the wind turbines are distributed under various conditions with best fitness. The main emphasis of discussion is focused on the scenario of wind direction varying from 0° to 45°. Results show that choosing the appropriate position of wind turbines is more significant than choosing the wind turbine numbers, considering that the former has a bigger influence on the whole farm fitness than the latter. And the farm has best performance of fitness values, farm efficiency, and total power with the direction between 20°to 30°.
Resumo:
Objective Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle GPS devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of two anti-speeding advertisements by incorporating both self-report and objective measures of speeding behaviour. In addition, this study aimed to compare the findings derived from these different measurement approaches. Methods Young drivers (N = 20, Mage = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. Whilst viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout® GPS device was then installed into participants’ vehicles for one week to measure on-road speed-related driving behaviour. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behaviour. Results There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behaviour and the objective driving data (as assessed via the GPS devices). Conclusions This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.
Resumo:
Here, we describe a metal-insulator-insulator nanofocusing structure formed by a high-permittivity dielectric wedge on a metal substrate. The structure is shown to produce nanofocusing of surface plasmon polaritons (SPPs) in the direction opposite to the taper of the wedge, including a range of nanoplasmonic effects such as nanofocusing of SPPs with negative refraction, formation of plasmonic caustics within a nanoscale distance from the wedge tip, mutual transformation of SPP modes, and significant local field enhancements in the adiabatic and strongly nonadiabatic regimes. A combination of approximate analytical and rigorous numerical approaches is used to analyze the strength and position of caustics in the structure. In particular, it is demonstrated that strong SPP localization within spatial regions as small as a few tens of nanometers near the caustic is achievable in the considered structures. Contrary to other nanofocusing configurations, efficient nanofocusing is shown to occur in the strongly nonadiabatic regime with taper angles of the dielectric wedge as large as ∼40° and within uniquely short distances (as small as a few dozens of nanometers) from the tip of the wedge. Physical interpretations of the obtained results are also presented and discussed.
Resumo:
Evaluation of psychomotor skills is undertaken in a number of broad contexts. This includes testing of health professional populations as a measure of innate ability, to evaluate skill acquisition, or to compare professions. However, the use of psychomotor tests is frequently confounded by a lack of understanding of a particular tool's psychometric properties, strengths, and weaknesses. To identify and appraise the most commonly used tests on health professional populations, 86 articles were reviewed and the top nine tests identified. Few tests have had sufficient validity or reliability testing on health professionals. Based on the evidence available, use of the Grooved Pegboard Test, the Purdue Pegboard Test, or the Finger Tapping Test is recommended for the evaluation of dexterity in a health professional population; however, this choice may be dependent on the task(s) to which findings are generalised. More rigorous evaluation of validity and other psychometric properties is required.
Resumo:
Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.
Resumo:
We present a new, generic method/model for multi-objective design optimization of laminated composite components using a novel multi-objective optimization algorithm developed on the basis of the Quantum behaved Particle Swarm Optimization (QPSO) paradigm. QPSO is a co-variant of the popular Particle Swarm Optimization (PSO) and has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; Failure Mechanism based Failure criteria, Maximum stress failure criteria and the Tsai-Wu Failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences as well as fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Also, the performance of QPSO is compared with the conventional PSO.
Resumo:
Background: Optometry students are taught the process of subjective refraction through lectures and laboratory based practicals before progressing to supervised clinical practice. Simulated learning environments (SLEs) are an emerging technology that are used in a range of health disciplines, however, there is limited evidence regarding the effectiveness of clinical simulators as an educational tool. Methods: Forty optometry students (20 fourth year and 20 fifth year) were assessed twice by a qualified optometrist (two examinations separated by 4-8 weeks) while completing a monocular non-cycloplegic subjective refraction on the same patient with an unknown refractive error simulated using contact lenses. Half of the students were granted access to an online SLE, The Brien Holden Vision Institute (BHVI®) Virtual Refractor, and the remaining students formed a control group. The primary outcome measures at each visit were; accuracy of the clinical refraction compared to a qualified optometrist and relative to the Optometry Council of Australia and New Zealand (OCANZ) subjective refraction examination criteria. Secondary measures of interest included descriptors of student SLE engagement, student self-reported confidence levels and correlations between performance in the simulated and real world clinical environment. Results: Eighty percent of students in the intervention group interacted with the SLE (for an average of 100 minutes); however, there was no correlation between measures of student engagement with the BHVI® Virtual Refractor and speed or accuracy of clinical subjective refractions. Fifth year students were typically more confident and refracted more accurately and quickly than fourth year students. A year group by experimental group interaction (p = 0.03) was observed for accuracy of the spherical component of refraction, and post hoc analysis revealed that less experienced students exhibited greater gains in clinical accuracy following exposure to the SLE intervention. Conclusions: Short-term exposure to a SLE can positively influence clinical subjective refraction outcomes for less experienced optometry students and may be of benefit in increasing the skills of novice refractionists to levels appropriate for commencing supervised clinical interactions.
Resumo:
This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.
Resumo:
Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.