946 resultados para neutrino experiments
Resumo:
The carousel wind tunnel (CWT) can be a significant tool for the determination of the nature and magnitude of interparticlar forces at threshold of motion. By altering particle and drum surface electrical properties and/or by applying electric potential difference across the inner and outer drums, it should be possible to separate electrostatic effects from other forces of cohesion. Besides particle trajectory and bedform analyses, suggestions for research include particle aggregation in zero and sub-gravity environments, effect of suspension-saltation ratio on soil abrasion, and the effects of shear and shear free turbulence on particle aggregation as applied to evolution of solar nebula.
Resumo:
Computer Experiments, consisting of a number of runs of a computer model with different inputs, are now common-place in scientific research. Using a simple fire model for illustration some guidelines are given for the size of a computer experiment. A graph is provided relating the error of prediction to the sample size which should be of use when designing computer experiments. Methods for augmenting computer experiments with extra runs are also described and illustrated. The simplest method involves adding one point at a time choosing that point with the maximum prediction variance. Another method that appears to work well is to choose points from a candidate set with maximum determinant of the variance covariance matrix of predictions.
Resumo:
Deterministic computer simulations of physical experiments are now common techniques in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena of this nature. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This thesis investigates some practical issues in the design and analysis of computer experiments and attempts to answer some of the questions faced by experimenters using computer experiments. In particular, the question of the number of computer experiments and how they should be augmented is studied and attention is given to when the response is a function over time.
Resumo:
This research project explores how interdisciplinary art practices can provide ways for questioning and envisaging alternative modes of coexistence between humans and the non-humans who together, make up the environment. As a practiceled project, it combines a body of creative work (50%) and this exegesis (50%). My interdisciplinary artistic practice appropriates methods and processes from science and engineering and merges them into artistic contexts for critical and poetic ends. By blending pseudo-scientific experimentation with creative strategies like visual fiction, humour, absurd public performance and scripted audience participation, my work engages with a range of debates around ecology. This exegesis details the interplay between critical theory relating to these debates, the work of other creative practitioners and my own evolving artistic practice. Through utilising methods and processes drawn from my prior career in water engineering, I present an interdisciplinary synthesis that seeks to promote improved understandings of the causes and consequences of our ecological actions and inactions.
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
In this paper we describe cooperative control algorithms for robots and sensor nodes in an underwater environment. Cooperative navigation is defined as the ability of a coupled system of autonomous robots to pool their resources to achieve long-distance navigation and a larger controllability space. Other types of useful cooperation in underwater environments include: exchange of information such as data download and retasking; cooperative localization and tracking; and physical connection (docking) for tasks such as deployment of underwater sensor networks, collection of nodes and rescue of damaged robots. We present experimental results obtained with an underwater system that consists of two very different robots and a number of sensor network modules. We present the hardware and software architecture of this underwater system. We then describe various interactions between the robots and sensor nodes and between the two robots, including cooperative navigation. Finally, we describe our experiments with this underwater system and present data.
Resumo:
This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.
Resumo:
A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist and cross-section change due to web distortion. This lateral distortional buckling behaviour has been shown to cause significant reduction of the available flexural strength of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the experimental investigation, the results, and the final stiffener arrangement whereas the details of the finite element analyses are presented in a companion paper at this conference.
Resumo:
The hollow flange beam (HFB) is a new cold-formed and resistance-welded section developed in Australia. Due to its unique geometry comprising two stiff triangular flanges and a slender web, the HFB is susceptible to a lateral-distortional buckling mode of failure involving web distortion. Investigation using finite-element analyses showed that the use of transverse web plate stiffeners effectively eliminated lateral-distortional buckling of HFBs and thus any associated reduction in flexural capacity. A detailed experimental investigation was then carried out to validate the results from the finite-element analysis and to improve the stiffener configuration further. This led to the development of a special stiffener that is screw-fastened to the flanges on alternate sides of the web. This paper presents the details of the experimental investigations, the results, and the final stiffener arrangement whereas the details of the finite-element analyses are presented in a companion paper.
Resumo:
Facial expression recognition (FER) systems must ultimately work on real data in uncontrolled environments although most research studies have been conducted on lab-based data with posed or evoked facial expressions obtained in pre-set laboratory environments. It is very difficult to obtain data in real-world situations because privacy laws prevent unauthorized capture and use of video from events such as funerals, birthday parties, marriages etc. It is a challenge to acquire such data on a scale large enough for benchmarking algorithms. Although video obtained from TV or movies or postings on the World Wide Web may also contain ‘acted’ emotions and facial expressions, they may be more ‘realistic’ than lab-based data currently used by most researchers. Or is it? One way of testing this is to compare feature distributions and FER performance. This paper describes a database that has been collected from television broadcasts and the World Wide Web containing a range of environmental and facial variations expected in real conditions and uses it to answer this question. A fully automatic system that uses a fusion based approach for FER on such data is introduced for performance evaluation. Performance improvements arising from the fusion of point-based texture and geometry features, and the robustness to image scale variations are experimentally evaluated on this image and video dataset. Differences in FER performance between lab-based and realistic data, between different feature sets, and between different train-test data splits are investigated.
Resumo:
Objectives The goal of this article is to examine whether or not the results of the Queensland Community Engagement Trial (QCET)-a randomized controlled trial that tested the impact of procedural justice policing on citizen attitudes toward police-were affected by different types of nonresponse bias. Method We use two methods (Cochrane and Elffers methods) to explore nonresponse bias: First, we assess the impact of the low response rate by examining the effects of nonresponse group differences between the experimental and control conditions and pooled variance under different scenarios. Second, we assess the degree to which item response rates are influenced by the control and experimental conditions. Results Our analysis of the QCET data suggests that our substantive findings are not influenced by the low response rate in the trial. The results are robust even under extreme conditions, and statistical significance of the results would only be compromised in cases where the pooled variance was much larger for the nonresponse group and the difference between experimental and control conditions was greatly diminished. We also find that there were no biases in the item response rates across the experimental and control conditions. Conclusion RCTs that involve field survey responses-like QCET-are potentially compromised by low response rates and how item response rates might be influenced by the control or experimental conditions. Our results show that the QCET results were not sensitive to the overall low response rate across the experimental and control conditions and the item response rates were not significantly different across the experimental and control groups. Overall, our analysis suggests that the results of QCET are robust and any biases in the survey responses do not significantly influence the main experimental findings.
Resumo:
The paper provides a systematic approach to designing the laboratory phase of a multiphase experiment, taking into account previous phases. General principles are outlined for experiments in which orthogonal designs can be employed. Multiphase experiments occur widely, although their multiphase nature is often not recognized. The need to randomize the material produced from the first phase in the laboratory phase is emphasized. Factor-allocation diagrams are used to depict the randomizations in a design and the use of skeleton analysis-of-variance (ANOVA) tables to evaluate their properties discussed. The methods are illustrated using a scenario and a case study. A basis for categorizing designs is suggested. This article has supplementary material online.
Resumo:
This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves-streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures-sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures-plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g.,He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path-the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.
Resumo:
The aim of this study is to investigate the stress relaxation behavior of single chondrocytes using the Porohyperelastic (PHE) model and inverse Finite Element Analysis (FEA). Firstly, based on Atomic Force Microscopy (AFM) technique, we have found that the chondrocytes exhibited stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. Next, we have applied the inverse FEA technique to determine necessary material parameters for PHE model to simulate this stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that this PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.