956 resultados para nerve fiber regeneration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE. We compared retinal nerve fiber layer (RNFL) and macular thickness measurements in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) with or without a history of optic neuritis, and in controls using Fourier-domain (FD) optical coherence tomography (OCT). METHODS. Patients with MS (n = 60), NMO (n = 33), longitudinal extensive transverse myelitis (LETM, n = 28) and healthy controls (n = 41) underwent ophthalmic examination, including automated perimetry, and FD-OCT RNFL and macular thickness measurements. Five groups of eyes were compared: MS with or without previous optic neuritis, NMO, LETM, and controls. Correlation between OCT and visual field (VF) findings was investigated. RESULTS. With regard to most parameters, RNFL and macular thickness measurements were significantly smaller in eyes of each group of patients compared to controls. MS eyes with optic neuritis did not differ significantly from MS eyes without optic neuritis, but measurements were smaller in NMO eyes than in all other groups. RNFL (but not macular thickness) measurements were significantly smaller in LETM eyes than in controls. While OCT abnormalities were correlated significantly with VF loss in NMO/LETM and MS, the correlation was much stronger in the former. CONCLUSIONS. Although FD-OCT RNFL and macular thickness measurements can reveal subclinical or optic neuritis-related abnormalities in NMO-spectrum and MS patients, abnormalities are predominant in the macula of MS patients and in RFNL measurements in NMO patients. The correlation between OCT and VF abnormalities was stronger in NMO than in MS, suggesting the two conditions differ regarding structural and functional damage. (ClinicalTrials.gov number, NCT01024985.) Invest Ophthalmol Vis Sci. 2012;53:3959-3966) DOI:10.1167/iovs.11-9324

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Carpal tunnel syndrome is the most common neuropathy in the upper extremity, resulting from the compression of the median nerve at wrist level. Clinical studies are essentials to present evidence on therapeutic resources use at early restoration on peripheral nerve functionality. Low-level laser therapy has been widely investigated in researches related to nerve regeneration. Therefore, it is suggested that the effect of low-level laser therapy associated with other conservative rehabilitation techniques may positively affect symptoms and overall hand function in compressive neuropathies such as carpal tunnel syndrome. The aim of this study is to evaluate the effectiveness of low-level laser therapy in addition to orthoses therapy and home orientations in patients with carpal tunnel syndrome. Methods/Design: Patients older than 18 years old will be included, with clinical diagnosis of carpal tunnel syndrome, excluding comorbidies. A physiotherapist will conduct intervention, with a blinding evaluator. Randomization will be applied to allocate the patients in each group: with association or not to low-level laser therapy. All of them will be submitted to orthoses therapy and home orientations. Outcome will be assessed through: pain visual analogic scale, Semmes Weinstein monofilaments (TM) threshold sensibility test, Pinch Gauge T, Boston Carpal Tunnel Questionnaire and two point discrimination test. Discussion: This paper describes the design of a randomized controlled trial, which aim to assess the effectiveness of conservative treatment added to low-level laser therapy for patients with carpal tunnel syndrome. Trial registration: Brazilian Clinical Trials Registry (ReBec) - 75ddtf / Universal Trial Number: U1111-1121-5184

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods: Four hundred twenty-two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study and from the African Descent and Glaucoma Evaluation Study. All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results: Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R(2) = 0.314, P < 0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusions: RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJETIVO: Determinar a reprodutibilidade da espessura da camada de fibras nervosas da retina peripapilar e dos parâmetros da cabeça do nervo óptico em olhos normais, utilizando a tomografia de coerência óptica de domínio espectral (SD-OCT). MÉTODOS: Trinta e quatro olhos de 34 indivíduos saudáveis foram incluídos no estudo. O protocolo do cubo do disco óptico 200x200 do OCT Cirrus foi utilizado para gerar 3 imagens de cada olho para avaliar a reprodutibilidade. O coeficiente de correlação intraclasse (ICC) foi calculado para as medidas da espessura da camada de fibras nervosas da retina e da cabeça do nervo óptico. RESULTADOS: A correlação foi excelente para todas as medidas da espessura da camada de fibras nervosas da retina (ICC entre 0,87 e 0,98). O mesmo ocorreu com os parâmetros da cabeça do nervo óptico que, com exceção da razão E/D vertical (ICC 0,56), apresentou ICC entre 0,83 e 0,99. CONCLUSÃO: As medidas de espessura da camada de fibras nervosas da retina peripapilar e os parâmetros da cabeça no nervo óptico demonstraram uma excelente reprodutibilidade com o OCT Cirrus, indicando que este aparelho poderá ser uma ferramenta útil no estudo do glaucoma. Este estudo apresenta algumas limitações, como o pequeno número de casos avaliados, sendo necessários maiores estudos para corroborar nossos achados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN Retrospective case series. PARTICIPANTS We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. METHODS Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. RESULTS Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. CONCLUSIONS Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE To evaluate macular retinal ganglion cell thickness in patients with neovascular age-related macular degeneration (AMD) and intravitreal anti-vascular endothelial growth factor (VEGF) therapy. DESIGN Retrospective case series with fellow-eye comparison METHODS: Patients with continuous unilateral anti-VEGF treatment for sub- and juxtafoveal neovascular AMD and a minimum follow-up of 24 months were included. The retinal nerve fiber (RNFL) and retinal ganglion cell layer (RGCL) in the macula were segmented using an ETDRS grid. RNFL and RGCL thickness of the outer ring of the ETDRS grid were quantified at baseline and after repeated anti-VEGF injections, and compared to the patients' untreated fellow eye. Furthermore, best-corrected visual acuity (BCVA), age, and retinal pigment epithelium (RPE) atrophy were recorded and correlated with RNFL and RGCL. RESULTS Sixty eight eyes of 34 patients (23 female and 11 male; mean age 76.7 (SD±8.2) with a mean number of 31.5 (SD ±9.8) anti-VEGF injections and a mean follow-up period of 45.3 months (SD±10.5) were included. Whereas the RGCL thickness decreased significantly compared to the non-injected fellow eye (p=0.01) the decrease of the RNFL was not significant. Visual acuity gain was significantly correlated with RGCL thickness (r=0.52, p<0.05) at follow-up and negatively correlated (r=-0.41, p<0.05) with age. Presence of RPE atrophy correlated negatively with the RGCL thickness at follow-up (r= -0.37, p=0.03). CONCLUSION During the course of long term anti-VEGF therapy there is a significant decrease of the RGCL in patients with neovascular AMD to the fellow (untreated) eye.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary olfactory neurons project axons from the olfactory neuroepithelium lining the nasal cavity to,the olfactory bulb in the brain. These axons grow within large mixed bundles in the olfactory nerve and then sort out into homotypic fascicles in the nerve fiber layer of the olfactory bulb before terminating in topographically fixed glomeruli. Carbohydrates expressed on the cell surface have been implicated in axon sorting within the nerve fiber layer. We have identified two novel subpopulations of primary olfactory neurons that express distinct alpha-extended lactoseries carbohydrates recognised by monoclonal antibodies LA4 and KH10. Both carbohydrate epitopes are present on novel glycoforms of the neural cell adhesion molecule, which we have named NOC-7 and NOC-8. Primary axon fasciculation is disrupted in vitro when interactions between these cell surface lactoseries carbohydrates and their endogenous binding molecules are inhibited by the LA4 and KH10 antibodies or lactosamine sugars. We report the expression of multiple members of the lactoseries binding galectin family in the primary olfactory system. In particular, galectin-3 is expressed by ensheathing cells surrounding nerve fascicles in the submucosa and nerve fiber layer, where it may mediate cross-linking of axons. Galectin-4, -7, and -8 are expressed by the primary olfactory axons as they grow from the nasal cavity to the olfactory bulb. A putative role for NOC-7 and NOC-8 in axon fasciculation and the expression of multiple galectins in the developing olfactory nerve suggest that these molecules may be involved in the formation of this pathway, particularly in the sorting of axons as they converge towards their target. (C) 2004Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary olfactory axons expressing different odorant receptors are interspersed within the olfactory nerve. However, upon reaching the outer nerve fiber layer of the olfactory bulb they defasciculate, sort out, and refasciculate prior to targeting glomeruli in fixed topographic positions. While odorant receptors are crucial for the final targeting of axons to glomeruli, it is unclear what directs the formation of the nerve fiber and glomerular layers of the olfactory bulb. While the olfactory bulb itself may provide instructive cues for the development of these layers, it is also possible that the incoming axons may simply require the presence of a physical scaffold to establish the outer laminar cytoarchitecture. In order to begin to understand the underlying role of the olfactory bulb in development of the outer layers of the olfactory bulb, we physically ablated the olfactory bulbs in OMP-IRES-LacZ and P2-IRES-tau-LacZ neonatal mice and replaced them with artificial biological scaffolds molded into the shape of an olfactory bulb. Regenerating axons projected around the edge of the cranial cavity at the periphery of the artificial scaffold and were able to form an olfactory nerve fiber layer and, to some extent, a glomerular layer. Our results reveal that olfactory axons are able to form rudimentary cytoarchitectonic layers if they are provided with an appropriately shaped biological scaffold. Thus, the olfactory bulb does not appear to provide any tropic substance that either attracts regenerating olfactory axons into the cranial cavity or induces these axons to form a plexus around its outer surface. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.

We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.

We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.

The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purtscher-like retinopathy is associated with retinal hemorrhages and ischaemia probably due to the complement-mediated leukoembolization. It is a rare and severe angiopathy found in conditions such as acute pancreatitis. Case. We present a case of a 53-year-old man who presented with a Purtscher-like retinopathy associated with the development of acute pancreatitis in the context of a Klatskin tumour (a hilar cholangiocarcinoma). The ophthalmologic evaluation revealed the best corrected visual acuity (BCVA) of 20/32 in the right eye (RE) and of 20/40 in the left eye (LE); biomicroscopy of anterior segment showed scleral icterus and fundoscopy revealed peripapillary cotton-wool spots, optic disc edema, and RPE hypo- and hyperpigmentation in the middle peripheral retina in both eyes with an intraretinal hemorrhage in the LE. 15 months after the initial presentation, without ophthalmological treatment, there was an improvement of BCVA to 20/20 in both eyes and optical coherence tomography (OCT) revealed areas of reduction of retinal nerve fiber layer thickness corresponding to the previous cotton-wool spots. Conclusion. Purtscher-like retinopathy should not be neglected in complex clinical contexts. Its unclear pathophysiology determines an uncertain treatment strategy, but a meticulous follow-up is compulsory in order to avoid its severe complications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although several postmortem findings in the retina of patients with Alzheimer's disease (AD) are available, new biomarkers for early diagnosis and follow-up of AD are still lacking. It has been postulated that the defects in the retinal nerve fiber layer (RNFL) may be the earliest sign of AD, even before damage to the hippocampal region that affects memory. This fact may reflect retinal neuronal-ganglion cell death and axonal loss in the optic nerve in addition to aging.