917 resultados para nanotubes
Resumo:
The enhanced large-scale model and numerical simulations are used to clarify the growth mechanism and the differences between the plasma- and neutral gas-grown carbon nanotubes, and to reveal the underlying physics and the key growth parameters. The results show that the nanotubes grown by plasma can be longer due to the effects of hydrocarbon ions with velocities aligned with the nanotubes. We show that the low-temperature growth is possible when the hydrocarbon ion flux dominates over fluxes of other species. We have also analysed the dependencies of the nanotube growth rates on nanotube and process parameters. The results are verified by a direct comparison with the experimental data. The model is generic and can be used for other types of carbon nanostructures such as carbon nanowalls, vertical graphenes, etc.
Resumo:
Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.
Resumo:
Graphene and carbon nanotubes (CNTs) are attractive electrode materials for supercapacitors. However, challenges such as the substrate-limited growth of CNTs, nanotube bundling in liquid electrolytes, under-utilized basal planes, and stacking of graphene sheets have so far impeded their widespread application. Here we present a hybrid structure formed by the direct growth of CNTs onto vertical graphene nanosheets (VGNS). VGNS are fabricated by a green plasma-assisted method to break down and reconstruct a natural precursor into an ordered graphitic structure. The synergistic combination of CNTs and VGNS overcomes the challenges intrinsic to both materials. The resulting VGNS/CNTs hybrids show a high specific capacitance with good cycling stability. The charge storage is based mainly on the non-Faradaic mechanism. In addition, a series of optimization experiments were conducted to reveal the critical factors that are required to achieve the demonstrated high supercapacitor performance.
Resumo:
The cytotoxicity of carbon nanotubes (CNTs) is a major concern today well before its unusual physicochemical, mechanical, and electrical properties are fully exploited for commercial interests and subsequent mass production leading to greater possibilities for its exposure to humans and the environment. Contradictory reports on cytotoxicity of CNTs often appear in the literature and a mechanistic explanation of the reported toxicity remains obscure. We review here the conflicting results to focus categorically on an array of issues in CNT cytotoxicity. They include dispersion, aggregation status, coating or functionalization and immobilization, cellular uptake or internalization, purity in terms of metal catalyst contaminants, size and size distribution, surface area, surface chemistry and surface reactivity, cell types selected for experimentation as well as bioassay of nanotoxicity itself attesting as an issue in cytotoxicity. Recently a general agreement has emerged towards the potential toxicity of CNTs, although various paradigms explaining the mechanisms of CNT cytotoxicity continue to be elusive in the literature. A lack of synergy among various issues while studying cytotoxicity and most developed paradigms for the mechanism of CNT toxicity is highlighted.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Room temperature gas sensing properties of ultrathin carbon nanotubes by surfactant-free dip coating
Resumo:
Large-scale production of reliable carbon nanotubes (CNTs) based gas sensors involves the development of scalable and reliable processes for the fabrication of films with controlled morphology. Here, we report for the first time on highly scalable, ultrathin CNT films, to be employed as conductometric sensors for NO2 and NH3 detection at room temperature. The sensing films are produced by dip coating using dissolved CNTs in chlorosulfonic acid as a working solution. This surfactant-free approach does not require any post-treatment for the removal of dispersants or any CNTs functionalization, thus promising high quality CNTs for better sensitivity and low production costs. The effect of CNT film thickness and defect density on the gas sensing properties has been investigated. Detection limits of 1 ppm for NO2 and 7 ppm for NH3 have been achieved at room temperature. The experimental results reveal that defect density and film thickness can be controlled to optimize the sensing response. Gas desorption has been accelerated by continuous in-situ UV irradiation.
Resumo:
We used molecular dynamics (MD) simulations to study the reorientational dynamics of water molecules confined inside narrow carbon nanotubes immersed in a bath of water. Our simulations show that the confined water molecules exhibit bistability in their reorientational relaxation, which proceeds by angular jumps between the two stable states. The angular jump of a water molecule in the bulk involves the breaking of a hydrogen bond with one of its neighbors and the formation of a hydrogen bond with a different neighbor. In contrast, the angular jump of a confined water molecule corresponds to an interchange of the two hydrogen atoms that can form a hydrogen bond with the same neighbor. The free energy barrier between these two states is a few k(B)T. The analytic solution of a simplified two-state jump model that qualitatively explains the reorientational behavior observed in simulations is also presented.
Resumo:
A comparative study of the electric-field induced hopping transport probes the effective dimensionality (D) in bulk and ultrathin films of single-wall carbon nanotubes (SWNTs). The values of the scaling function exponents for the electroconductance are found to be consistent with that in three-dimensional and two-dimensional systems. The significant difference in threshold voltage in these two types of SWNTs is a consequence of the variation in the number of energetically favorable sites available for charge carriers to hop by using the energy from the field. Furthermore, a modification to the magnetotransport is observed under high electric-fields.
Resumo:
Iron nanoparticles are embedded in multiwall carbon nanotubes by the chemical vapor deposition, where benzene and ferrocene are taken as precursor materials. Varying quantity of iron particles are embedded in these tubes by taking different amount of ferrocene. These particles exhibit a magnetic moment up to 98 emu/g and an enhanced coercivity in the range of 500-2000 Oe. Negative magnetoresistance similar to 10% is observed in the presence of magnetic field up to 11 T applied at various temperatures in the range of 1.3 K-300 K. It is argued that the enhanced coercivity is due to the shape anisotropy. The negative magnetoresistance is believed to be due to the weak localization and spin dependent scattering of electrons by the ferromagnetic particles. In addition we also observe a dependence of the magnetoresistance on the direction of applied field and this is correlated with the shape anisotropy of the Fe particles.
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics
Resumo:
Interaction of electron donor and acceptor molecules with graphene samples prepared by different methods as well as with single-walled carbon nanotubes (SWNTs) has been investigated by isothermal titration calorimetry (ITC). The ITC interaction energies of the graphene samples and SWNTs with electron acceptor molecules are higher than those with electron donor molecules. Thus, tetracyanoethylene (TCNE) shows the highest interaction energy with both graphene and SWNTs. The interaction energy with acceptor molecules varies with the electron affinity as well as with the charge-transfer transition energy for different aromatics. Metallic SWNTs interact reversibly with electron acceptor molecules, resulting in the opening of a gap.
Resumo:
We report the synthesis and structural characterization of ferroelectric bismuth vanadate (Bi2VO5.5) (BVO) nanotubes within the nanoporous anodic aluminum oxide (AAO) templates via sol-gel method. The as-prepared BVO nanotubes were characterized by X-ray powder diffraction (XRD), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HRTEM) and the stoichiometry of the nanotubes was established by energy-dispersive X-ray spectroscopy (EDX). Postannealed (675 degrees C for 1 h), BVO nanotubes were a polycrystalline and the XRD studies confirmed the crystal structure to be orthorhombic. The uniformity in diameter and length of the nanotubes as reveled by the TEM and SEM suggested that these were influenced to a guest extent by the thickness and pore diameter of the nanoporous AAO template. EDX analysis demonstrated the formation of stoichiometric Bi2VO5.5 phase. HRTEM confirmed that the obtained BVO nanotubes were made up of nanoparticles of 5-9 nm range. The possible formation mechanism of nanotubes was elucidated.
Resumo:
Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.