910 resultados para morphological plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade we have come to appreciate that the microenvironment has the potential for major influence on the cancer cell. An extreme case for this occurs when the cancer cell changes its environment in the context of metastasis, where this may in part underpin the altered biology of cells in metasases. Increasing evidence suggests that changes in the cellular microenvironment contribute to tumourigenesis and metastasis, but the molecular basis of these alterations is not well understood. Reactive stroma provides oncogenic signals to facilitate tumourigenesis and metastasis—co-implantation of normal human epithelial cells in vivo with irradiated, carcinogen treated, or cancer derived fibroblasts leads to the enhancement or formation of malignant tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information on the variation available for different plant attributes has enabled germplasm collections to be effectively utilised in plant breeding. A world sourced collection of white clover germplasm has been developed at the White Clover Resource Centre at Glen Innes, New South Wales. This collection of 439 accessions was characterised under field conditions as a preliminary study of the genotypic variation for morphological attributes; stolon density, stolon branching, number of nodes. number of rooted nodes, stolon thickness, internode length, leaf length, plant height and plant spread, together with seasonal herbage yield. Characterisation was conducted on different batches of germplasm (subsets of accessions taken from the complete collection) over a period of five years. Inclusion of two check cultivars, Haifa and Huia, in each batch enabled adjustment of the characterisation data for year effects and attribute-by-year interaction effects. The component of variance for seasonal herbage yield among batches was large relative to that for accessions. Accession-by-experiment and accession-by-season interactions for herbage yield were not detected. Accession mean repeatability for herbage yield across seasons was intermediate (0.453). The components of genotypic variance among accessions for all attributes, except plant height, were larger than their respective standard errors. The estimates of accession mean repeatability for the attributes ranged from low (0.277 for plant height) to intermediate (0.544 for internode length). Multivariate techniques of clustering and ordination were used to investigate the diversity present among the accessions in the collection. Both cluster analysis and principal component analysis suggested that seven groups of accessions existed. It was also proposed from the pattern analysis results that accessions from a group characterised by large leaves, tall plants and thick stolons could be crossed with accessions from a group that had above average stolon density and stolon branching. This material could produce breeding populations to be used in recurrent selection for the development of white clover cultivars for dryland summer moisture stress environments in Australia. The germplasm collection was also found to be deficient in genotypes with high stolon density, high number of branches high number of rooted nodes and large leaves. This warrants addition of new germplasm accessions possessing these characteristics to the present germplasm collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a morphological study of the settlement patterns of the diverse hill groups in Chittagong Hill Tracts – a mountainous borderland of Bangladesh in South Asia. It examines the settlement morphology of a hill town, using a combination of both quantitative and qualitative methods, and explains the recurrent neighbourhood types of the highland groups in relation to their urbanisation. The research findings related to the settlements of diverse cultural groups in a cross-border region of the Asian uplands are also relevant to similar contexts and enquiries. Furthermore, the developed methodological framework that facilitated the data collection process in CHT's culturally diverse regions is also applicable to the investigation of geographic areas with similar socio-cultural complexities. Finally, this research specifically contributes to the literature of cross-cultural studies of highland towns and vernacular settlements in the Asian context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.