982 resultados para model collection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oligoryzomys (Cricetidae, Sigmodontinae) is a common rodent genus from South America that includes a couple of very similar species. Related species have been used as experimental model for understanding several diseases for which these species are reservoirs. In order to provide a better understanding of the embryological aspects of this group, herein we showed data on the embryonic and fetal development in Oligoryzomys sp. Eight specimens of different stages of gestation were obtained from the Collection of the Zoology Museum of University of Sao Paulo, Brazil. Gestational ages were estimated by crown-rump-length according to Evans and Sack (1973). To address our analysis after examining the gross morphology, tissues from several organs were processed for light and scanning electron microscopy. Morphological data on the systems (nervous system, cardiorespiratory system, intestinal tract and urogenital system) were described in detail. Finally, the findings were compared with what is known about embryological aspects in other rodent species in order to establish similarities and differences during the organogenesis in different species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In humans and other mammals, sperm morphology has been considered one of the most important predictive parameters of fertility. The objective was to determine the presence and distribution of sperm head morphometric subpopulations in a nonhuman primate model (Callithrix jacchus), using an objective computer analysis system and principal component analysis (PCA) methods to establish the relationship between the subpopulation distribution observed and among-donor variation. The PCA method revealed a stable number of principal components in all donors studied, that represented more than 85% of the cumulative variance in all cases. After cluster analysis, a variable number (from three to seven) sperm morphometric subpopulations were identified with defined sperm dimensions and shapes. There were differences in the distribution of the sperm morphometric subpopulations (P < 0.001) in all ejaculates among the four donors analyzed. In conclusion, in this study, computerized sperm analysis methods combined with PCA cluster analyses were useful to identify, classify, and characterize various head sperm morphometric subpopulations in nonhuman primates, yielding considerable biological information. In addition, because all individuals were kept in the same conditions, differences in the distribution of these subpopulations were not attributed to external or management factors. Finally, the substantial information derived from subpopulation analyses provided new and relevant biological knowledge which may have a practical use for future studies in human and nonhuman primate ejaculates, including identifying individuals more suitable for assisted reproductive technologies. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarthritis (OA) or degenerative joint disease (DJD) is a pathology which affects the synovial joints and characterised by a focal loss of articular cartilage and subsequent bony reaction of the subcondral and marginal bone. Its etiology is best explained by a multifactorial model including: age, sex, genetic and systemic factors, other predisposing diseases and functional stress. In this study the results of the investigation of a modern identified skeletal collection will be presented. In particular, we will focus on the relationship between the presence of OA at various joints. The joint modifications have been analysed using a new methodology that allows the scoring of different degrees of expression of the features considered. Materials and Methods The sample examined comes from the Sassari identified skeletal collection (part of “Frassetto collections”). The individuals were born between 1828 and 1916 and died between 1918 and 1932. Information about sex and age is known for all the individuals. The occupation is known for 173 males and 125 females. Data concerning the occupation of the individuals indicate a preindustrial and rural society. OA has been diagnosed when eburnation (EB) or loss of morphology (LM) were present, or when at least two of the following: marginal lipping (ML), esostosis (EX) or erosion (ER), were present. For each articular surface affected a “mean score” was calculated, reflecting the “severity” of the alterations. A further “score” was calculated for each joint. In the analysis sexes and age classes were always kept separate. For the statistical analyses non parametric test were used. Results The results show there is an increase of OA with age in all the joints analyzed and in particular around 50 years and 60 years. The shoulder, the hip and the knee are the joints mainly affected with ageing while the ankle is the less affected; the correlation values confirm this result. The lesion which show the major correlation with age is the ML. In our sample males are more frequently and more severely affected by OA than females, particularly at the superior limbs, while hip and knee are similarly affected in the two sexes. Lateralization shows some positive results in particular in the right shoulder of males and in various articular surfaces especially of the superior limb of both males and females; articular surfaces and joints are quite always lateralized to the right. Occupational analyses did not show remarkable results probably because of the homogeneity of the sample; males although performing different activities are quite all employed in stressful works. No highest prevalence of knee and hip OA was found in farm-workers respect to the other males. Discussion and Conclusion In this work we propose a methodology to score the different features, necessary to diagnose OA, that allows the investigation of the severity of joint degeneration. This method is easier than the one proposed by Buikstra and Ubelaker (1994), but in the same time allows a quite detailed recording of the features. Epidemiological results can be interpreted quite simply and they are in accordance with other studies; more difficult is the interpretation of the occupational results because many questions concerning the activities performed by the individuals of the collection during their lifespan cannot be solved. Because of this, caution is suggested in the interpretation of bioarcheological specimens. With this work we hope to contribute to the discussion on the puzzling problem of the etiology of OA. The possibility of studying identified skeletons will add important data to the description of osseous features of OA, enriching the medical documentation, based on different criteria. Even if we are aware that the clinical diagnosis is different from the palaeopathological one we think our work will be useful in clarifying some epidemiological as well as pathological aspects of OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full axon counting of optic nerve cross-sections represents the most accurate method to quantify axonal damage, but such analysis is very labour intensive. Recently, a new method has been developed, termed targeted sampling, which combines the salient features of a grading scheme with axon counting. Preliminary findings revealed the method compared favourably with random sampling. The aim of the current study was to advance our understanding of the effect of sampling patterns on axon counts by comparing estimated axon counts from targeted sampling with those obtained from fixed-pattern sampling in a large collection of optic nerves with different severities of axonal injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Individual adaptation of processed patient's blood volume (PBV) should reduce number and/or duration of autologous peripheral blood progenitor cell (PBPC) collections. STUDY DESIGN AND METHODS: The durations of leukapheresis procedures were adapted by means of an interim analysis of harvested CD34+ cells to obtain the intended yield of CD34+ within as few and/or short as possible leukapheresis procedures. Absolute efficiency (AE; CD34+/kg body weight) and relative efficiency (RE; total CD34+ yield of single apheresis/total number of preapheresis CD34+) were calculated, assuming an intraapheresis recruitment if RE was greater than 1, and a yield prediction models for adults was generated. RESULTS: A total of 196 adults required a total of 266 PBPC collections. The median AE was 7.99 x 10(6), and the median RE was 1.76. The prediction model for AE showed a satisfactory predictive value for preapheresis CD34+ only. The prediction model for RE also showed a low predictive value (R2 = 0.36). Twenty-eight children underwent 44 PBPC collections. The median AE was 12.13 x 10(6), and the median RE was 1.62. Major complications comprised bleeding episodes related to central venous catheters (n = 4) and severe thrombocytopenia of less than 10 x 10(9) per L (n = 16). CONCLUSION: A CD34+ interim analysis is a suitable tool for individual adaptation of the duration of leukapheresis. During leukapheresis, a substantial recruitment of CD34+ was observed, resulting in a RE of greater than 1 in more than 75 percent of patients. The upper limit of processed PBV showing an intraapheresis CD34+ recruitment is higher than in a standard large-volume leukapheresis. Therefore, a reduction of individually needed PBPC collections by means of a further escalation of the processed PBV seems possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Professor Sir David R. Cox (DRC) is widely acknowledged as among the most important scientists of the second half of the twentieth century. He inherited the mantle of statistical science from Pearson and Fisher, advanced their ideas, and translated statistical theory into practice so as to forever change the application of statistics in many fields, but especially biology and medicine. The logistic and proportional hazards models he substantially developed, are arguably among the most influential biostatistical methods in current practice. This paper looks forward over the period from DRC's 80th to 90th birthdays, to speculate about the future of biostatistics, drawing lessons from DRC's contributions along the way. We consider "Cox's model" of biostatistics, an approach to statistical science that: formulates scientific questions or quantities in terms of parameters gamma in probability models f(y; gamma) that represent in a parsimonious fashion, the underlying scientific mechanisms (Cox, 1997); partition the parameters gamma = theta, eta into a subset of interest theta and other "nuisance parameters" eta necessary to complete the probability distribution (Cox and Hinkley, 1974); develops methods of inference about the scientific quantities that depend as little as possible upon the nuisance parameters (Barndorff-Nielsen and Cox, 1989); and thinks critically about the appropriate conditional distribution on which to base infrences. We briefly review exciting biomedical and public health challenges that are capable of driving statistical developments in the next decade. We discuss the statistical models and model-based inferences central to the CM approach, contrasting them with computationally-intensive strategies for prediction and inference advocated by Breiman and others (e.g. Breiman, 2001) and to more traditional design-based methods of inference (Fisher, 1935). We discuss the hierarchical (multi-level) model as an example of the future challanges and opportunities for model-based inference. We then consider the role of conditional inference, a second key element of the CM. Recent examples from genetics are used to illustrate these ideas. Finally, the paper examines causal inference and statistical computing, two other topics we believe will be central to biostatistics research and practice in the coming decade. Throughout the paper, we attempt to indicate how DRC's work and the "Cox Model" have set a standard of excellence to which all can aspire in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of proposals for estimating the bivariate survival function under random censoring has been made. In this paper we discuss nonparametric maximum likelihood estimation and the bivariate Kaplan-Meier estimator of Dabrowska. We show how these estimators are computed, present their intuitive background and compare their practical performance under different levels of dependence and censoring, based on extensive simulation results, which leads to a practical advise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Malani and Neilsen (1992) we have proposed alternative estimates of survival function (for time to disease) using a simple marker that describes time to some intermediate stage in a disease process. In this paper we derive the asymptotic variance of one such proposed estimator using two different methods and compare terms of order 1/n when there is no censoring. In the absence of censoring the asymptotic variance obtained using the Greenwood type approach converges to exact variance up to terms involving 1/n. But the asymptotic variance obtained using the theory of the counting process and results from Voelkel and Crowley (1984) on semi-Markov processes has a different term of order 1/n. It is not clear to us at this point why the variance formulae using the latter approach give different results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.