874 resultados para mobile phone involvement
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Resumo:
The increasing deployment of mobile communication base stations led to an increasing demand for epidemiological studies on possible health effects of radio frequency emissions. The methodological challenges of such studies have been critically evaluated by a panel of scientists in the fields of radiofrequency engineering/dosimetry and epidemiology. Strengths and weaknesses of previous studies have been identified. Dosimetric concepts and crucial aspects in exposure assessment were evaluated in terms of epidemiological studies on different types of outcomes. We conclude that in principle base station epidemiological studies are feasible. However, the exposure contributions from all relevant radio frequency sources have to be taken into account. The applied exposure assessment method should be piloted and validated. Short to medium term effects on physiology or health related quality of life are best investigated by cohort studies. For long term effects, groups with a potential for high exposure need to first be identified; for immediate effect, human laboratory studies are the preferred approach.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
The Technology Gap and the Growth of the Firm: A Case Study of China's Mobile-phone Handset Industry
Resumo:
We have examined the way in which local Chinese firms confronted with a technology gap have achieved growth, using the Chinese handset industry as a case study. Chinese local firms have lacked technology, and have therefore turned to outside firms for development, design, and manufacturing, while they themselves have focused on sales and marketing, using their advantage of familiarity with the Chinese market. Consequently, by establishing a growth condition in which their selection of boundaries counterbalances the technology gap they have been able to expand their market share in comparison with foreign firms.
Resumo:
Mobile phones are becoming increasingly popular and are already the first access technology to information and communication. However, people with disabilities have to face a lot of barriers when using this kind of technology. This paper presents an Accessible Contact Manager and a Real Time Text application, designed to be used by all users with disabilities. Both applications are focused to improve accessibility of mobile phones.
Resumo:
This article evaluates an authentication technique for mobiles based on gestures. Users create a remindful identifying gesture to be considered as their in-air signature. This work analyzes a database of 120 gestures of different vulnerability, obtaining an Equal Error Rate (EER) of 9.19% when robustness of gestures is not verified. Most of the errors in this EER come from very simple and easily forgeable gestures that should be discarded at enrollment phase. Therefore, an in-air signature robustness verification system using Linear Discriminant Analysis is proposed to infer automatically whether the gesture is secure or not. Different configurations have been tested obtaining a lowest EER of 4.01% when 45.02% of gestures were discarded, and an optimal compromise of EER of 4.82% when 19.19% of gestures were automatically rejected.
Resumo:
The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.
Resumo:
Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The epresentativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.
Resumo:
Natural disasters affect hundreds of millions of people worldwide every year. Emergency response efforts depend upon the availability of timely information, such as information concerning the movements of affected populations. The analysis of aggregated and anonymized Call Detail Records (CDR) captured from the mobile phone infrastructure provides new possibilities to characterize human behavior during critical events. In this work, we investigate the viability of using CDR data combined with other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. An impact map has been reconstructed using Landsat-7 images to identify the floods. Within this frame, the underlying communication activity signals in the CDR data have been analyzed and compared against rainfall levels extracted from data of the NASA-TRMM project. The variations in the number of active phones connected to each cell tower reveal abnormal activity patterns in the most affected locations during and after the floods that could be used as signatures of the floods - both in terms of infrastructure impact assessment and population information awareness. The representativeness of the analysis has been assessed using census data and civil protection records. While a more extensive validation is required, these early results suggest high potential in using cell tower activity information to improve early warning and emergency management mechanisms.
Resumo:
The first automatic mobile phone service was launched in Australia in 1981, with the first cellular mobile service following in 1987. In 2003 there were over 14.5 million mobile phone subscribers, and the technology had become central to everyday life and culture. Despite the significance of mobile phones, little has been written about their Australian histories. This paper offers some notes on the history of mobile telecommunications in Australia. As well as reviewing the development of the mobile phone in Australia, it looks at the cultural representation of this technology.