964 resultados para mitochondrial metabolism
Resumo:
Les sécrétines de l’hormone de croissance (GHRPs) sont de petits peptides synthétiques capables de stimuler la sécrétion de l’hormone de croissance à partir de l’hypophyse via leur liaison au récepteur de la ghréline GHS-R1a. Le GHRP hexaréline a été utilisé afin d’étudier la distribution tissulaire de GHS-R1a et son effet GH-indépendant. Ainsi, par cette approche, il a été déterminé que l’hexaréline était capable de se lier à un deuxième récepteur identifié comme étant le récepteur scavenger CD36. Ce récepteur possède une multitude de ligands dont les particules oxLDL et les acides gras à longue chaîne. CD36 est généralement reconnu pour son rôle dans l’athérogénèse et sa contribution à la formation de cellules spumeuses suite à l’internalisation des oxLDL dans les macrophages/monocytes. Auparavant, nous avions démontré que le traitement des macrophages avec l’hexaréline menait à l’activation de PPARƔ via sa liaison à GHS-R1a, mais aussi à CD36. De plus, une cascade d’activation impliquant LXRα et les transporteurs ABC provoquait également une augmentation de l’efflux du cholestérol. Une stimulation de la voie du transport inverse du cholestérol vers les particules HDL entraînait donc une diminution de l’engorgement des macrophages de lipides et la formation de cellules spumeuses. Puisque CD36 est exprimé dans de multiples tissus et qu’il est également responsable du captage des acides gras à longue chaîne, nous avons voulu étudier l’impact de l’hexaréline uniquement à travers sa liaison à CD36. Dans le but d’approfondir nos connaissances sur la régulation du métabolisme des lipides par CD36, nous avons choisi des types cellulaires jouant un rôle important dans l’homéostasie lipidique n’exprimant pas GHS-R1a, soient les adipocytes et les hépatocytes. L’ensemble de mes travaux démontre qu’en réponse à son interaction avec l’hexaréline, CD36 a le potentiel de réduire le contenu lipidique des adipocytes et des hépatocytes. Dans les cellules adipeuses, l'hexaréline augmente l’expression de plusieurs gènes impliqués dans la mobilisation et l’oxydation des acides gras, et induit également l’expression des marqueurs thermogéniques PGC-1α et UCP-1. De même, hexaréline augmente l’expression des gènes impliqués dans la biogenèse mitochondriale, un effet accompagné de changements morphologiques des mitochondries; des caractéristiques observées dans les types cellulaires ayant une grande capacité oxydative. Ces résultats démontrent que les adipocytes blancs traités avec hexaréline ont la capacité de se transformer en un phénotype similaire aux adipocytes bruns ayant l’habileté de brûler les acides gras plutôt que de les emmagasiner. Cet effet est également observé dans les tissus adipeux de souris et est dépendant de la présence de CD36. Dans les hépatocytes, nous avons démontré le potentiel de CD36 à moduler le métabolisme du cholestérol. En réponse au traitement des cellules avec hexaréline, une phosphorylation rapide de LKB1 et de l’AMPK est suivie d’une phosphorylation inhibitrice de l’HMG-CoA réductase (HMGR), l’enzyme clé dans la synthèse du cholestérol. De plus, la liaison d'hexaréline à CD36 provoque le recrutement d’insig-2 à HMGR, l’étape d’engagement dans sa dégradation. La dégradation de HMGR par hexaréline semble être dépendante de l’activité de PPARƔ et de l’AMPK. Dans le but d’élucider le mécanisme d’activation par hexaréline, nous avons démontré d’une part que sa liaison à CD36 provoque une déphosphorylation de Erk soulevant ainsi l’inhibition que celui-ci exerce sur PPARƔ et d’autre part, un recrutement de l’AMPK à PGC-1α expliquant ainsi une partie du mécanisme d’activation de PPARƔ par hexaréline. Les résultats générés dans cette thèse ont permis d’élucider de nouveaux mécanismes d’action de CD36 et d'approfondir nos connaissances de son influence dans la régulation du métabolisme des lipides.
Resumo:
La mitochondrie est de plus en plus reconnue pour sa contribution à la dégénerescence musculaire. Les dysfonctions mitochondriales, en plus de causer une défaillance énergétique, contribuent à la signalisation apoptotique, stimule la production de ROS et peuvent induire une surcharge calcique. Ces caractéristiques sont tous reliées à certains types de myopathies. Cette thèse met en lumières comment certaines dysfonctions mitochondriales peuvent intervenir dans la pathogenèse de diverses myopathies. Nous démontrons que les dysfonctions mitochondriales sont impliqués dans l’atrophie dû à la perte d’innervation. Par contre, la désensabilisation de l’ouverture du pore mitochondrial de transition de perméabilité, via ablation génétique de cyclophiline-D, ne prévient ni la signalisation apoptotique mitochondrial ni l’atrophie. Nous avons aussi observé des dysfonctions mitochondriales dans le muscle atteint de dystrophie musculaire de Duchenne qui furent améliorés suite à une transfection de PGC1-α, laquelle résulta aussi en une amélioration de la pathologie. Finalement, nous démontrons que le recyclage de mitochondrie par les voies de mitophagies et de contrôles de la qualité impliquant Parkin et possiblement d’autres voies de signalisation inconnues sont cruciales au recouvrement cardiaqe lors d’un choc septique.
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn/ mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn/ mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn/ mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn/ mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Resumo:
In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010
Resumo:
The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.
Resumo:
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.
Resumo:
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.
Resumo:
The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)(4)Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found all increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 mu M at 24h, 211 mu M at 48 h to 81 mu M at 72 h. In conclusion, Ru(2)GLA is a novel drug with anti proliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Mitochondria are the central coordinators of energy metabolism and alterations in their function and number have long been associated with metabolic disorders such as obesity, diabetes and hyperlipidemias. Since oxidative phosphorylation requires an electrochemical gradient across the inner mitochondrial membrane, ion channels in this membrane certainly must play an important role in the regulation of energy metabolism. However, in many experimental settings, the relationship between the activity of mitochondrial ion transport and metabolic disorders is still poorly understood. This review briefly summarizes some aspects of mitochondrial H(+) transport (promoted by uncoupling proteins, UCPs). Ca(2+) and K(+) uniporters which may be determinant in metabolic disorders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoK(ATP)). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. isolated HTG liver mitochondria presented lower rates of H(2)O(2) production, which were reversed by mitoK(ATP) antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote MitoK(ATP) activation. The mild uncoupling mediated by mitoK(ATP) increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoK(ATP) is a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess, (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ss-adrenergic stimulation with 1.0 mu M isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 +/- 5 vs 158 +/- 5, P < 0.0005) and low catalase (7 +/- 1 vs 9 +/- 1, P < 0.005) and superoxide-dismutase (18 +/- 2 vs 27 +/- 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.
Resumo:
CONTEXTO E OBJETIVO: em crianças, a esteatose hepática pode se relacionar a erros inatos do metabolismo (EIMs) ou à doença hepática gordurosa não-alcoólica (DHGNA). O objetivo deste estudo foi avaliar e caracterizar esteatose de causa indeterminada por meio de análises morfológica e morfométrica em tecido hepático. TIPO DE ESTUDO E LOCAL: Estudo transversal nos Departamentos de Patologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (FCM-Unicamp) e Faculdade de Medicina de Botucatu da Universidade Estadual Paulista (FMB-Unesp). MÉTODOS: Foram utilizadas 18 biópsias hepáticas consecutivas obtidas de 16 pacientes com idade variando de 3 meses a 12 anos e 9 meses, inseridas num banco de dados no período do estudo, que foram analisadas por microscopia óptica e eletrônica. Na microscopia eletrônica, foi realizada determinação da densidade mitocondrial e da área superficial média das mitocôndrias nos hepatócitos. Dez pacientes com idade variando de 1 a 14 anos foram usados como grupo controle. RESULTADOS: Foi detectada esteatose pura, não acompanhada por fibrose ou outra alteração histológica. Foi verificado que, na predominância de esteatose microvesicular, houve aumento significativo da área mitocondrial média. CONCLUSÃO: A esteatose microvesicular pode estar relacionada à hepatopatia mitocondrial primária, principalmente devido à redução na β-oxidação ou parcial estagnação da fosforilação oxidativa. Por essas razões, esta forma de esteatose (que não pode ser chamada de pura) possivelmente represente uma fase inicial no amplo espectro da DHGNA. Chamamos a atenção para casos de esteatose no grupo pediátrico com predomínio da forma microvesicular, uma vez que pode haver associação com desordens mitocondriais.