909 resultados para migration of rhizobia
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
A theoretical study on the velocity of electroosmotic flow (EOF) and the retention times of neutral solutes under multiple-step gradient of capillary electrochromatography (CEC) was carried out, focusing on that with three kinds of mobile phases. Through the model computations, the detaining time of the second kind of mobile phase in the column was proved to play an important role in affecting EOF. The variation speed of EOF was shown to be determined by the differences among dead times in different steps. In addition, the prediction of the retention times of 13 aromatic compounds under gradient mode was performed with the deduced equations. A relative error below 3.3% between the calculated and experimental values was obtained, which demonstrated the rationality of the theoretical deduction. Our study could not only improve the comprehension of stepwise gradient elution, but also be of significance for the further optimization of separation conditions in the analysis of complex samples.
Resumo:
Characteristics of electroosmotic flow (EOF) and the migration of neutral solutes under double stepwise gradient elution in capillary electrochromatography were studied systematically. EOF velocity proved to be the function of operation time changing with the introduction of the second mobile phase. Accordingly, the retention of components also changed. The migration of neutral solutes was studied under the following three situations; A, components eluted when the column was filled only with the first kind of mobile phase; B, solutes eluted still in the first kind of mobile phase while at that time two kinds of mobile phase coexisted in the column and C, samples eluted in the second kind of mobile phase. Equations to describe the retention times of components under these three kinds of conditions were deduced and applied to predict the retention times of 12 aromatic compounds. Relative errors between experimental and calculated values were below 5.0%, which proved the reliability of the equations. In addition, parameters that might affect the retention time of solutes, such as the transferring time of mobile phase vials, the capacity factors of components and EOF velocities two steps were studied systematically (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The vertical growth of seagrasses in response to burial by migration of bedforms is combined with dating techniques to provide precise and rapid estimates of the migration speed of subaqueous dunes over seagrass patches. Two methods to estimate the time interval between the passage of successive dunes and the motion of single dunes through seagrass patches are described. The second method is more precise. The application of these methods to vegetated (Cymodocea nodosa) subaqueous dunes in the Alfacs Bay (NW Mediterranean) showed that the dunes traveled at an average speed of $13.0 \pm 0.6 m yr^-1$ and demonstrated that the methods can resolve migration speeds from 0.15 to $980 m yr^-1$ with this particular seagrass species. In areas vegetated with different seagrass species, bedform migration can be estimated over different time scales. The strong coupling between seagrass and sediment dynamics resembles the coupling of vegetation and land dunes.
Resumo:
A model is developed to investigate the trade-offs between benefits and costs involved in zooplanktonic diel vertical migration (DVM) strategies. The 'venturous revenue' (VR) is used as the criterion for optimal trade-offs. It is a function of environmental factors and the age of zooplankter. During vertical migration, animals are assumed to check instantaneously the variations of environmental parameters and thereby select the optimal behavioral strategy to maximize the value of VR, i.e. taking up as much food as possible with a certain risk of mortality. The model is run on a diel time scale (24 h) in four possible scenarios during the animal's life history. The results show that zooplankton can perform normal DVM balancing optimal food intake against predation risk, with the profile of DVM largely modified by the age of zooplankter.
Resumo:
The large seasonal migration of the transition zone chlorophyll front (TZCF) is of interest because a number of marine fauna, both commercial and endangered, appear to track it. Herein we examine the physical dynamics driving this seasonal migration of the TZCF. Vertical processes, traditionally viewed as controlling the dynamical supply of nutrients to surface waters, prove insufficient to explain seasonal variations in nutrient supply to the transition zone. Instead, we find that the horizontal Ekman transport of nutrients from higher latitudes drives the TZCF's southward migration. The estimated horizontal transport of nitrate supports up to 40% of new primary productivity in the region annually and nearly all of new primary productivity in the winter. The significance of horizontal advection to the North Pacific transition zone supports revising the paradigm that nutrients are supplied to surface waters from below. © 2010 by the American Geophysical Union.