942 resultados para microgravity gas-liquid two-phase flow
Resumo:
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1 , heat flux from 0 to 55 kW m−2 , exit saturation temperatures of 31 and 41◦C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.
Resumo:
Studies into the two-phase flow patterns produced on a sieve tray were carried out using an air-water simulator of 2.44 m in diameter. The flow patterns were investigated by a number of methods, direct observation using directional flow pointers; by water-cooling to simulate mass transfer; and by measurement of the height of clear liquid across the tray with manometers. The flow rates used were designed to show how the flow pattern changed with the change in the gas and liquid rates. The results from water-only studies on an un-perforated tray were compared with those produced on a sieve tray with holes of 12.7 mm diameter. The presence of regions on the sides of the tray where the liquid was circulating was noted from the water-only experiments. The presence and magnitude of the circulations was reduced when the air was passed through the liquid. These were similar to the findings of Hine (1990) and Chambers (1993). When circulation occurred, the flow separated at the ends of the inlet downcomer and circulations of up to 30% of the tray area were observed. Water-cooling and the manometer measurements were used to show the effect of the flow pattern on the tray efficiency and the height of clear liquid respectively. The efficiency was severely reduced by the presence of circulations. The height of clear liquid tended to rise in these areas. A comparison of data collected on trays with different hole diameters showed that the larger hole diameter inhibited the on-set of separation to a greater extent than small hole diameters. The tray efficiency was affected by a combination of the better mixing on smaller hole trays and detrimental effect of greater circulation on these trays. Work on a rectangular tray geometry was carried out to assess the effect of hole size on the height of clear liquid. It was found that the gradient on the outlet half of the tray was very small and that the highest clear liquid height was given by the highest hole size. Overall, the experiments helped to clarify the effect that the flow pattern had on the operation of the tray. It is hoped that the work can be of use in the development of models to predict the flow pattern and hence the tray efficiency.
Resumo:
Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.
Resumo:
The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.
Resumo:
Proton exchange membrane (PEM) fuel cell has been known as a promising power source for different applications such as automotive, residential and stationary. During the operation of a PEM fuel cell, hydrogen is oxidized in anode and oxygen is reduced in the cathode to produce the intended power. Water and heat are inevitable byproducts of these reactions. The water produced in the cathode should be properly removed from inside the cell. Otherwise, it may block the path of reactants passing through the gas channels and/or gas diffusion layer (GDL). This deteriorates the performance of the cell and eventually can cease the operation of the cell. Water transport in PEM fuel cell has been the subject of this PhD study. Water transport on the surface of the GDL, through the gas flow channels, and through GDL has been studied in details. For water transport on the surface of the GDL, droplet detachment has been measured for different GDL conditions and for anode and cathode gas flow channels. Water transport through gas flow channels has been investigated by measuring the two-phase flow pressure drop along the gas flow channels. As accumulated liquid water within gas flow channels resists the gas flow, the pressure drop increases along the flow channels. The two-phase flow pressure drop can reveal useful information about the amount of liquid water accumulated within gas flow channels. Liquid water transport though GDL has also been investigated by measuring the liquid water breakthrough pressure for the region between the capillary fingering and the stable displacement on the drainage phase diagram. The breakthrough pressure has been measured for different variables such as GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. Prior to all these studies, GDL microstructural properties have been studied. GDL microstructural properties such as mean pore diameter, pore diameter distribution, and pore roundness distribution have been investigated by analyzing SEM images of GDL samples.
Resumo:
The influence of four variables, specifically PEG molar mass (400, 1,000, and 8,000 g/mol), concentrations of PEG and phosphate salts (15, 20, and 25% for both), and agitation intensity (110, 150, and 200 rpm), on clavulanic acid (CA) extraction by extractive fermentation with PEG/phosphate salts aqueous two-phase system was investigated in shaken flasks using a 2(4-1)-fractional factorial design. After selection of the two most significant variables (agitation intensity and PEG molar mass), an optimization study conducted according to a 2(2)-central composite design revealed that 25% PEG 8,000 g/mol and phosphate salts at 240 rpm (run 6) were the best conditions for the extractive fermentation, leading to the best results in terms of partition coefficient (k = 8.2), yield of CA in the PEG-rich phase (eta(T) = 93%) and productivity (P = 5.3 mg/Lh). As a first attempt to make a scale-up of these results, the effectiveness of the extractive fermentation was then checked in a bench-scale bioreactor under conditions as close as possible to the optimum ones determined in flasks. The highest CA concentration obtained in the PEG-rich phase (691 mg/L) was 30% higher than in flasks, thus demonstrating the potential of such a new process, integrating the production and extraction steps, as a promising, low-cost tool to obtain high yields of this and similar products. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 95-103, 2011
Resumo:
In biotechnology, endotoxin (LPS) removal from recombinant proteins is a critical and challenging step in the preparation of injectable therapeutics, as endotoxin is a natural component of bacterial expression systems widely used to manufacture therapeutic proteins. The viability of large-scale industrial production of recombinant biomolecules of pharmaceutical interest significantly depends on the separation and purification techniques used. The aim of this work was to evaluate the use of aqueous two-phase micellar system (ATPMS) for endotoxin removal from preparations containing recombinant proteins of pharmaceutical interest, such as green fluorescent protein (GFPuv). Partition assays were carried out initially using pure LPS, and afterwards in the presence of E. coli cell lysate. The ATPMS technology proved to be effective in GFPuv recovery, preferentially into the micelle-poor phase (K(GFPuv) < 1.00), and LPS removal into the micelle-rich phase (%REM(LPS) > 98.00%). Therefore, this system can be exploited as the first step for purification in biotechnology processes for removal of higher LPS concentrations. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 26: 1644-1653, 2010
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Precursor systems of liquid crystalline phase were prepared using the surfactant PPG-5-Ceteth-20, isopropyl myristate, and water; gelatin microparticles containing propolis were then added into these systems. Homogeneity of dispersion, the in-system microparticle morphology, and sedimentation behavior of each formulation were evaluated. The rheological and mechanical properties (hardness, compressibility, and adhesiveness), the work of syringing, and the propolis release profile were also evaluated. All the formulations exhibited pseudoplastic flow and thixotropy, and they displayed storage modulus, loss modulus, dynamic viscosity, and loss tangent that depended on temperature, frequency, and composition. Mechanical properties varied significantly among the formulations being affected by changes in the composition and temperature. Raising the concentration of surfactant and adding propolis microparticles significantly decreased the work of syringing. The drug release was non-Fickian (anomalous) and there was no significant difference between the tested systems in the times required for 10%, 30%, and 50% release of the initial drug loading.
Resumo:
Multiphase flows, hyperbolic model, Godunov method, nozzle flow, nonstrictly hyperbolic
Resumo:
Two-phase polycrystal, elasto-viscoplastic material model, heterogeneity, anisotropy, flow behaviour, crystallographic texture, strain field
Resumo:
Kuplakolonnireaktoreiden CFD-mallinnus on talla hetkella voimakkaasti kehittyva tutkimusalue. Kaksifaasivirtauksen luotettava simulointi ja mallintaminen on haastavaa kuplakolonnireaktorissa tapahtuvien ilmioiden monimutkaisuuden vuoksi. Reaktorin kayttaytymiseen vaikuttavat tekijat, kuten kolonnin hydrodynamiikka ja aineensiirto, tulee tuntea hyvin ennen mallien tekoa. Tassa tyossa on kokeellisesti tutkittu erilaisten mittausmenetelmien soveltuvuutta kuplakolonnin hydrodynamiikan tutkimiseen. Mittausmenetelmissa on keskitytty erityisesti CFD-mallien vaatimiin paikallisiin mittauksiin. Lisaksi tyossa on arvioitu mittausmenetelmien soveltuvuutta j a luotettavuutta CFD-mallien validointiin. Tyon kirjallisuusosassa on perehdytty kuplakolonnireaktorin hydrodynaamiseen kayttaytymiseen ja siihen vaikuttaviin tekijoihin. Naita ovat mm. reaktorityypit, kaasun dispergointi, virtaustyypit ja -alueet, kaasun tilavuusosuus, kaasukuplan koko ja kuplan nousunopeus. Mittauksia tehtiin kahdessa erikokoisessa kuplakolonnissa, joista pienemman halkaisija oli 0,078 m ja suuremman 0,182 m. Molempien kolonnien nestepinnan korkeus oli 4,62 m. Mittaukset tehtiin vesijohtovedella ja epaorgaanisella prosessiliuoksella. Hydrodynaamisista ominaisuuksista mitattiin kaasun tilavuusosuus, kaasukuplan koko seka kaasukuplan nousunopeus. Kaasun tilavuusosuusmittaukset tehtiin paaasiassa paine-eromittauksella ja joissakin tapauksissa pinnanmittausmenetelmalla. Kuplakoko- ja kuplan nousunopeusmittaukset tehtiin suumopeusvideokameralla ja laser Doppler-anemometrilla. Mittauksissa kaytettiin kahdeksaa erilaista kaasunjakolaitetta, joilla selvitettiin kaasunjakolaitteen ominaisuuksien vaikutusta kolonnin hydrodynamiikkaan. Tuloksista havaittiin, etta nestefaasin ominaisuuksilla oli suuri vaikutus kolonnin hydrodynaamiseen kayttaytymiseen. En kaasunjakolaitteilla vesijohtovedella mitatut hydrodynaamiset ominaisuudet eivat poikenneet paljoa toisistaan, kun taas prosessiliuoksella kaasunjakolaitteiden valille saatiin huomattavat erot. Mittausmenetelmista laser Doppler-anemometri ei kaytettavissa olleella optiikalla soveltunut kaasukuplien mittaamiseen. Kuplat olivat menetelmalle liian suuria. Suumopeusvideokamerallaja paine-eromittauksella paastiin hyviin tuloksiin.