740 resultados para metabolism, muscle, energetics, exercise, heart
Resumo:
1. 1. A polarographic method for the measurement of the available oxygen in the muscle of living carp by the use of a platinum microelectrode is proposed. 2. 2. The oxygen and the reference electrodes were assembled in a single insertion piece which was implanted in the muscle of a living carp maintained in a special experimental chamber. 3. 3. Curves for normal oxygen levels corresponding to air-saturated water, as well as to a carbogene-saturated water, were obtained. 4. 4. The method can be considered adequate for the measurement of tissue oxygen in living fishes. © 1984.
Resumo:
The objective was to determine the effects of carbohydrate (CHO) supplementation on exercise-induced hormone responses and post-training intramyocellular lipid stores (IMCL). Twenty-four elite male athletes (28.0 +/- 1.2 years) were randomized to receive CHO (maltodextrin solution) or zero energy placebo solution (control group). The high-intensity running protocol consisted of 10 x 800 m at 100% of the best 3000-m speed (Vm3 km) and 2 x 1000 m maximal bouts in the morning and a submaximal 10-km continuous easy running in the afternoon of day 9. IMCL concentrations were assessed by H-1-MRS before (-day 9) and after training (day 9) in soleus (SO) and tibialis anterior (TA) muscles. Blood hormones were also measured before, during, and post-exercise. The percent change (Delta%) in TA-IMCL was higher in the CHO group (47.9 +/- 24.5 IMCL/Cr) than in the control group (-1.7 +/- 13.1, respectively) (P=.04). Insulin concentrations were higher in the CHO group post-intermittent running compared to control (P=.02). Circulating levels of free fatty acids and GH were lower in the CHO group (P>.01). The decline in performance in the 2nd 1000-m bout was also attenuated in this group compared to control (P<.001 and P=.0035, respectively). The hormonal milieu (higher insulin and lower GH levels) in the CHO group, together with unchanged free fatty acid levels, probably contributed to the increased IMCL stores. This greater energy storage capacity may have improved post-exercise recovery and thus prevented performance deterioration. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: Conventional cardiac rehabilitation program consist of 15 min of warm-up, 30 min of aerobic exercise and followed by 15 min calisthenics exercise. The Pilates method has been increasingly applied for its therapeutic benefits, however little scientific evidence supports or rebukes its use as a treatment in patients with heart failure (HF). Purpose: Investigate the effects of Pilates on exercise capacity variables in HF. Methods: Sixteen pts with HF, left ventricular ejection fraction 27 +/- 14%, NYHA class III were randomly assigned to conventional cardiac rehabilitation program (n = 8) or mat Pilates training (n = 8) for 16 weeks of 30 min of aerobic exercise followed by 20 min of the specific program. Results: At 16 weeks, pts in the mat Pilates group and conventional group showed significantly increase on exercise time 11.9 +/- 2.5 to 17.8 +/- 4 and 11.7 +/- 3.9 to 14.2 +/- 4 min, respectively. However, only the Pilates group increased significantly the ventilation (from 56 +/- 20 to 69 +/- 17 L/min, P= 0.02), peak VO2 (from 20.9 +/- 6 to 24.8 +/- 6 mL/kg/min, P= 0.01), and O-2 pulse (from 11.9 +/- 2 to 13.8 +/- 3 mL/bpm, P= 0.003). The Pilates group showed significantly increase in peak VO2 when compared with conventional group (24.8 +/- 6 vs. 18.3 +/- 4, P= 0.02). Conclusions: The result suggests that the Pilates method may be a beneficial adjunctive treatment that enhances functional capacity in patients with HF who are already receiving standard medical therapy.
Resumo:
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Resumo:
A number of molecular tools enable us to study the mechanisms of muscle plasticity. Ideally, this research is conducted in view of the structural and functional consequences of the exercise-induced changes in gene expression. Muscle cells are able to detect mechanical, metabolic, neuronal and hormonal signals which are transduced over multiple pathways to the muscle genome. Exercise activates many signaling cascades--the individual characteristic of the stress leading to a specific response of a network of signaling pathways. Signaling typically results in the transcription of multiple early genes among those of the well known for and jun family, as well as many other transcription factors. These bind to the promoter regions of downstream genes initiating the structural response of muscle tissue. While signaling is a matter of minutes, early genes are activated over hours leading to a second wave of transcript adjustments of structure genes that can then be effective over days. Repeated exercise sessions thus lead to a concerted accretion of mRNAs which upon translation results in a corresponding protein accretion. On the structural level, the protein accretion manifests itself for instance as an increase in mitochondrial volume upon endurance training or an increase in myofibrillar proteins upon strength training. A single exercise stimulus carries a molecular signature which is typical both for the type of stimulus (i.e. endurance vs. strength) as well as the actual condition of muscle tissue (i.e. untrained vs. trained). Likewise, it is clearly possible to distinguish a molecular signature of an expressional adaptation when hypoxic stress is added to a regular endurance exercise protocol in well-trained endurance athletes. It therefore seems feasible to use molecular tools to judge the properties of an exercise stimulus much earlier and at a finer level than is possible with conventional functional or structural techniques.
Resumo:
PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
"November 1994"--P. [4] of portfolio.
Resumo:
Objective-Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Methods and results-Aerobic power was measured in 24 healthy men aged 29 9 years (mean +/- SD). Plasma was analysed from subjects of high aerobic power (HAP; VO(2)max, 64.6 +/- 6.1 ml/kg/min) and lower aerobic power (LAP;VO(2)max, 45.1 +/- 6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lowerTAC (1.38 +/- 0.04 versus 1.42 +/- 0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55 +/- 0.21 versus 1.36 +/- 0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. Conclusions-These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.
Resumo:
There are proposals for the implementation of beta(2)-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that beta(2)-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart beta(2)-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients.
Resumo:
The purpose of this study was to determine whether physical activity behavior tracks during early childhood. Forty-seven children (22 males, 25 females) aged 3-4 yr at the beginning of the study were followed over a 3-yr period. Heart rates were measured at least 2 and up to 4 d . yr(-1) with a Quantum XL Telemetry heart rate monitor. Physical activity was quantified as the percentage of observed minutes between 3:00 and 6:00 p.m. during which heart rate was 50% or more above individual resting heart rate (PAHR-50 Index). Tracking of physical activity was analyzed using Pearson and Spearman correlations. Yearly PAHR-50 index tertiles were created and examined for percent agreement and Cohen's kappa. Repeated measures ANOVA was used to calculate the intraclass correlation coefficient across the 3 yr of the study. Spearman rank order correlations ranged from 0.57 to 0.66 (P < 0.0001). Percent agreement ranged from 49% to 62%. The intraclass R for the 3 yr was 0.81. It was concluded that physical activity behavior tends to track during early childhood.
Resumo:
The cDNA encoding hsc70 of Chinese shrimp Fenneropenaeus chinensis was cloned from hepatopancreas by RT-PCR based on its EST sequence. The full length cDNA of 2090 bp contained an open reading frame of 1956 nucleotides and partial 5'- and 3'-untranslated region(5'- and 3'-UTR). PCR amplification and sequencing analysis showed the existence of introns in the region of 1-547 bp, but they did not exist in the region of 548-2090 bp of hsc70 cDNA. When the deduced 652 amino acid sequence of HSC70 was compared with the members of HSP70 family from other organisms, the results showed 85.9% similarity with HSC71 from Oncorhynchus mykiss and HSC70 from Homo sapiens. It also exhibited 85.8% similarity with HSP70 from Mus musculu and 85.4% with HSC70 from Manduca sexta. Expression analysis showed that hsc70 mRNA was espressed constitutively in hepatopancreas, muscle, eyestalks, haemocytes, heart, ovary, intestine and gills in Fenneropenaeus chinensis. No difference could be detected on hsc70 mRNA level in muscle between heat-shocked and control animals.
Resumo:
The metabolic vasodilator mediating postexercise hypotension (PEH) is poorly understood. Recent evidence suggests an exercise-induced reliance on pro-oxidant-stimulated vasodilation in normotensive young human subjects, but the role in the prehypertensive state is not known.
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.
Resumo:
Patellofemoral pain syndrome (PFPS) is described as anterior or retropatellar pain knee in the absence of other pathologies and is frequently associated with dysfunction of the vastus medialis oblique (VMO). However, several studies have demonstrated the inability to selectively activate this muscle through exercise. To evaluate the effect of Neuromuscular Electrical Stimulation (NMES) selective VMO in women with syndrome. We evaluated thirty-eight women: twenty in the control group (24.15 ± 2.60 years) and eighteen diagnosed with PFPS (25.56 ± 3.55 years). Both groups were evaluated before and after a protocol of electro stimulation. To measure for comparing groups before and after treatment, we assessed the extensor torque concentric and eccentric knee through an isokinetic dynamometer, the intensity (Root Mean Square - RMS) and the onset of activation (onset) of VMO compared to the vastus lateralis (VL) in two types of exercise: open and closed kinetic chain. . Statistical analysis was performed using SPSS 15.0, with a significance level of 5%. Results: Our data showed an increase in the intensity of activation (RMS) of the VMO muscle after NMES in both study groups. During concentric contraction the RMS of the VMO before the NMES was 105.69 ± 32.26 μV and after a single intervention was 122.10 ± 39.62 μV (p = 0.048) for the control group. In the group with PPS, we found a similar behavior, with RMS of the VMO before NMES of 96.25 ± 18.83 μV and 139.80 ± 65.88 μV after the intervention (p = 0.0001). However, there was no evidence in the RMS value of VL muscle. The onset was calculated by subtracting the onset of VL by the onset of VMO. For the group with PFPS, the onset before the intervention was -0.007 ± 0.14 ms, indicating a delay of the VMO relative to VL, and after NMES was 0.074 ± 0.09 ms (p = 0.016), showing an activation previous VMO to VL. The same occurred for the control group. We also observed that NMES increased knee extensor power during the concentric contraction in both groups. Before the intervention the mean power was 28.97 ± 9.01 W for the PPS group and after NMES was 34.38 ± 7.61 W (p = 0.0001). Conclusion: We observed an increase in electromyographic activity of the VMO and also an anticipatory effect of this muscle