842 resultados para metabolic quotient
Resumo:
The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.
Resumo:
Migraine is a common debilitating primary headache disorder with significant mental, physical and social health implications. The brain neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) is involved in nociceptive pathways and has been implicated in the pathophysiology of migraine. With few genetic studies investigating biosynthetic and metabolic enzymes governing the rate of 5-HT activity and their relationship to migraine, it was the objective of this study to assess genetic variants within the human tryptophan hydroxylase (TPH), amino acid decarboxylase (AADC) and monoamine oxidase A (MAOA) genes in migraine susceptibility. This objective was undertaken using a high-throughput DNA pooling experimental design, which proved to be a very accurate, sensitive and specific method of estimating allele frequencies for single nucleotide polymorphism, insertion deletion and variable number tandem repeat loci. Application of DNA pooling to a wide array of genetic loci provides greater scope in the assessment of population-based genetic association study designs. Despite the application of this high-throughput genotyping method, negative results from the two-stage DNA pooling design used to screen loci within the TPH, AADC and MAOA genes did not support their role in migraine susceptibility.
Resumo:
Two independent but inter-related conditions that have a growing impact on healthy life expectancy and health care costs in developed nations are an age-related loss of muscle mass (i.e., sarcopenia) and obesity. Sarcopenia is commonly exacerbated in overweight and obese individuals. Progression towards obesity promotes an increase in fat mass and a concomitant decrease in muscle mass, producing an unfavourable ratio of fat to muscle. The coexistence of diminished muscle mass and increased fat mass (so-called 'sarcobesity') is ultimately manifested by impaired mobility and/or development of life-style-related diseases. Accordingly, the critical health issue for a large proportion of adults in developed nations is how to lose fat mass while preserving muscle mass. Lifestyle interventions to prevent or treat sarcobesity include energy-restricted diets and exercise. The optimal energy deficit to reduce body mass is controversial. While energy restriction in isolation is an effective short-term strategy for rapid and substantial weight loss, it results in a reduction of both fat and muscle mass and therefore ultimately predisposes one to an unfavourable body composition. Aerobic exercise promotes beneficial changes in whole-body metabolism and reduces fat mass, while resistance exercise preserves lean (muscle) mass. Current evidence strongly supports the inclusion of resistance and aerobic exercise to complement mild energy-restricted high-protein diets for healthy weight loss as a primary intervention for sarcobesity.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.
Resumo:
Objectives To evaluate the feasibility, acceptability and effects of a Tai Chi and Qigong exercise programme in adults with elevated blood glucose. Design, Setting, and Participants A single group pre–post feasibility trial with 11 participants (3 male and 8 female; aged 42–65 years) with elevated blood glucose. Intervention Participants attended Tai Chi and Qigong exercise training for 1 to 1.5 h, 3 times per week for 12 weeks, and were encouraged to practise the exercises at home. Main Outcome Measures Indicators of metabolic syndrome (body mass index (BMI), waist circumference, blood pressure, fasting blood glucose, triglycerides, HDL-cholesterol); glucose control (HbA1c, fasting insulin and insulin resistance (HOMA)); health-related quality of life; stress and depressive symptoms. Results There was good adherence and high acceptability. There were significant improvements in four of the seven indicators of metabolic syndrome including BMI (mean difference −1.05, p<0.001), waist circumference (−2.80 cm, p<0.05), and systolic (−11.64 mm Hg, p<0.01) and diastolic blood pressure (−9.73 mm Hg, p<0.001), as well as in HbA1c (−0.32%, p<0.01), insulin resistance (−0.53, p<0.05), stress (−2.27, p<0.05), depressive symptoms (−3.60, p<0.05), and the SF-36 mental health summary score (5.13, p<0.05) and subscales for general health (19.00, p<0.01), mental health (10.55, p<0.01) and vitality (23.18, p<0.05). Conclusions The programme was feasible and acceptable and participants showed improvements in metabolic and psychological variables. A larger controlled trial is now needed to confirm these promising preliminary results.
Resumo:
Bacterial siderophores are a group of chemically diverse, virulence-associated secondary metabolites whose expression exerts metabolic costs. A combined bacterial genetic and metabolomic approach revealed differential metabolomic impacts associated with biosynthesis of different siderophore structural families. Despite myriad genetic differences, the metabolome of a cheater mutant lacking a single set of siderophore biosynthetic genes more closely approximate that of a nonpathogenic K12 strain than its isogenic, uropathogen parent strain. Siderophore types associated with greater metabolomic perturbations are less common among human isolates, suggesting that metabolic costs influence success in a human population. Although different siderophores share a common iron acquisition function, our analysis shows how a metabolomic approach can distinguish their relative metabolic impacts in E.coli.
Resumo:
Objective: This review focuses on laminitis that develops as a result of metabolic dysfunction and aims to provide a concise assessment of the current state of knowledge on this form of the disease. Outline: The most prevalent form of laminitis is associated with metabolic or endocrinopathic diseases, such as Equine Metabolic Syndrome and pituitary pars intermedia dysfunction, and the feeding of high-energy diets, particularly those rich in non-structural carbohydrates. Insulin dysregulation is the key hormonal imbalance implicated in causing this form of laminitis and hyperinsulinaemia is an important risk factor for the disease. Hyperinsulinaemia can occur in association with insulin resistance, obesity, regionalised adiposity, dysregulated cortisol metabolism and may also be related to other factors, such as breed and genetic predisposition. Recognition of hyperinsulinaemia is best achieved by using a dynamic oral glucose test that can be performed relatively easily under field conditions. Insulin produces a unique pathological lesion in the lamellae and the features of this lesion have informed investigations on the pathogenesis of the disease. Research into the mechanism of disease is continuing so that more targeted therapies than are currently available can be developed. However, dietary restriction and exercise remain effective management strategies for metabolic disease. Conclusions: Although the pathogenic mechanism/s of metabolic and endocrinopathic forms of laminitis remain the subject of intense research, ample data on risk factors for the disease are available. Efforts focussed on preventing the disease should aim to identify metabolic disease and reduce obesity and insulin resistance in at-risk individuals.
Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats
Resumo:
Objective Lower lipid and insulin levels are found during a glucose-tolerance test in obese black than obese white South African women. Therefore, β-cell function and lipid metabolism were compared in these populations during a mixed meal. Research Methods and Procedures Blood concentrations of glucose, free fatty acids (FFAs), insulin, lipograms, and in vivo FFA oxidation were determined at fasting and for 7 hours after oral administration of a mixed emulsion containing glucose-casein-sucrose-lipid and [1-13C] palmitic acid in 8 lean black women (LBW), 10 obese black women (OBW), 9 lean white women (LWW), and 10 obese white women (OWW). Subcutaneous and visceral fat mass was assessed by computerized tomography. Results Visceral fat area was higher in OWW (152.7 ± 17.0 cm2) than OBW (80.0 ± 6.7 cm2; p < 0.01). In OBW, 30-minute insulin levels were higher (604.3 ± 117.6 pM) than OWW (311.0 ± 42.9 pM; p < 0.05). Total triglyceride was higher in OWW (706.7 ± 96.0 mM × 7 hours) than OBW (465.7 ± 48.2 mM × 7 hours; p < 0.05) and correlated with visceral fat area (β = 0.38, p = 0.05). Palmitate oxidation was higher in lean than obese women in both ethnic groups and correlated negatively with fat mass (β = −0.58, p < 0.005). Discussion The higher 30-minute insulin response in OBW may reflect a higher insulinotropic effect of FFAs or glucose. The elevated triglyceride level of OWW may be due to their higher visceral fat mass and possibly reduced clearance by adipose tissue.
Resumo:
This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37
Resumo:
Aims and objectives To investigate whether physical activity is a protective factor against metabolic syndrome in middle-aged and older women. Background Socio-demographic and lifestyle behaviour factors contribute to metabolic syndrome. To minimise the risk of metabolic syndrome, several global guidelines recommend increasing physical activity level. However, only limited research has investigated the relationship between physical activity levels and metabolic syndrome in middle-aged and older women after adjusting for socio-demographic and lifestyle behaviour factors. Design Cross-sectional design. Methods A convenience sample of 326 middle-aged and older women was recruited. Metabolic syndrome was confirmed according to the National Cholesterol Education Program, Adult Treatment Panel III guidelines, and physical activity levels were measured by the International Physical Activity Questionnaire. Results The sample had a mean age of 60•9 years, and the prevalence of metabolic syndrome was 43•3%. Postmenopausal women and women with low socioeconomic status (low-education background, without personal income and currently unemployed) had a significantly higher risk of developing metabolic syndrome. After adjusting for significant socio-demographic and lifestyle behaviour factors, the women with moderate or high physical activity levels had a significantly lower (OR = 0•10; OR = 0•11, p < 0•001) risk of metabolic syndrome and a lower risk for each specific component of metabolic syndrome, including elevated fasting plasma glucose (OR = 0•29; OR = 0•26, p = 0•009), elevated blood pressure (OR = 0•18; OR = 0•32, p = 0•029), elevated triglycerides (OR = 0•41; OR = 0•15, p = 0•001), reduced high-density lipoprotein (OR = 0•28; OR = 0•27, p = 0•004) and central obesity (OR = 0•31; OR = 0•22, p = 0•027). Conclusions After adjusting for socio-demographic and lifestyle behaviour factors, physical activity level was a significant protective factor against metabolic syndrome in middle-aged and older women. Higher physical activity levels (moderate or high physical activity level) reduced the risk of metabolic syndrome in middle-aged and older women. Relevance to clinical practice Appropriate strategies should be developed to encourage middle-aged and older women across different socio-demographic backgrounds to engage in moderate or high levels of physical activity to reduce the risk of metabolic syndrome.
Resumo:
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.