959 resultados para mesh-free method
Resumo:
The present research project focuses its attention on the study of structure-property relations in polymers from renewable sources (bio-based polymers) such as polymers microbially produced, i.e. polyhydrohyalkanoates (PHAs) or chemically synthesized using monomers from renewable sources, i.e. polyammide 11 (PA11). By means of a broad spectrum of experimental techniques, the influence of different modifications on bio-based polymers such as blending with other components, copolymerization with different co-monomers and introduction of branching to yield complex architectures have been investigated. The present work on PHAs focused on the study of the dependence of polymer properties on both the fermentation process conditions (e.g. bacterial strain and carbon substrate used) and the method adopted to recover PHAs from cells. Furthermore, a solvent-free method using an enzyme and chemicals in an aqueous medium, was developed in order to recover PHAs from cells. Such a method allowed to recover PHA granules in their amorphous state, i.e. in native form useful for specific applications (e.g. paper coating). In addition, a commercial PHA was used as polymeric matrix to develop biodegradable and bio-based composites for food packaging applications. Biodegradable, non-toxic, food contact plasticizers and low cost, widely available lignocellulosic fibers (wheat straw fibers) were incorporated in such a polymeric matrix, in order to decrease PHA brittleness and the polymer cost, respectively. As concerns the study of polyamide 11, both the rheological and the solid-state behavior of PA11 star samples with different arm number and length was studied. Introduction of arms in a polymer molecule allows to modulate melt viscosity behavior which is advantageous for industrial applications. Also, several important solid-state properties, in particular mechanical properties, are affected by the presence of branching. Given the importance of using ‘green’ synthetic strategies in polymer chemistry, novel poly(-amino esters), synthesized via enzymatic-catalyzed polymerization, have also been investigated in this work.
Resumo:
The aim of the research activity focused on the investigation of the correlation between the degree of purity in terms of chemical dopants in organic small molecule semiconductors and their electrical and optoelectronic performances once introduced as active material in devices. The first step of the work was addressed to the study of the electrical performances variation of two commercial organic semiconductors after being processed by means of thermal sublimation process. In particular, the p-type 2,2′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DH4T) semiconductor and the n-type 2,2′′′- Perfluoro-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DFH4T) semiconductor underwent several sublimation cycles, with consequent improvement of the electrical performances in terms of charge mobility and threshold voltage, highlighting the benefits brought by this treatment to the electric properties of the discussed semiconductors in OFET devices by the removal of residual impurities. The second step consisted in the provision of a metal-free synthesis of DH4T, which was successfully prepared without organometallic reagents or catalysts in collaboration with Dr. Manuela Melucci from ISOF-CNR Institute in Bologna. Indeed the experimental work demonstrated that those compounds are responsible for the electrical degradation by intentionally doping the semiconductor obtained by metal-free method by Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) and Tributyltin chloride (Bu3SnCl), as well as with an organic impurity, like 5-hexyl-2,2':5',2''-terthiophene (HexT3) at, in different concentrations (1, 5 and 10% w/w). After completing the entire evaluation process loop, from fabricating OFET devices by vacuum sublimation with implemented intentionally-doped batches to the final electrical characterization in inherent-atmosphere conditions, commercial DH4T, metal-free DH4T and the intentionally-doped DH4T were systematically compared. Indeed, the fabrication of OFET based on doped DH4T clearly pointed out that the vacuum sublimation is still an inherent and efficient purification method for crude semiconductors, but also a reliable way to fabricate high performing devices.
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Resumo:
Background Aerosolized vaccine can be used as a needle-free method of immunization against measles, a disease that remains a major cause of illness and death. Data on the immunogenicity of aerosolized vaccine against measles in children are inconsistent. Methods We conducted an open-label noninferiority trial involving children 9.0 to 11.9 months of age in India who were eligible to receive a first dose of measles vaccine. Children were randomly assigned to receive a single dose of vaccine by means of either aerosol inhalation or a subcutaneous injection. The primary end points were seropositivity for antibodies against measles and adverse events 91 days after vaccination. The noninferiority margin was 5 percentage points. Results A total of 1001 children were assigned to receive aerosolized vaccine, and 1003 children were assigned to receive subcutaneous vaccine; 1956 of all the children (97.6%) were followed to day 91, but outcome data were missing for 331 children because of thawed specimens. In the per-protocol population, data on 1560 of 2004 children (77.8%) could be evaluated. At day 91, a total of 662 of 775 children (85.4%; 95% confidence interval [CI], 82.5 to 88.0) in the aerosol group, as compared with 743 of 785 children (94.6%; 95% CI, 92.7 to 96.1) in the subcutaneous group, were seropositive, a difference of -9.2 percentage points (95% CI, -12.2 to -6.3). Findings were similar in the full-analysis set (673 of 788 children in the aerosol group [85.4%] and 754 of 796 children in the subcutaneous group [94.7%] were seropositive at day 91, a difference of -9.3 percentage points [95% CI, -12.3 to -6.4]) and after multiple imputation of missing results. No serious adverse events were attributable to measles vaccination. Adverse-event profiles were similar in the two groups. Conclusions Aerosolized vaccine against measles was immunogenic, but, at the prespecified margin, the aerosolized vaccine was inferior to the subcutaneous vaccine with respect to the rate of seropositivity. (Funded by the Bill and Melinda Gates Foundation; Measles Aerosol Vaccine Project Clinical Trials Registry-India number, CTRI/2009/091/000673 .).
Resumo:
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 10³–10⁴ times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ~2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J −, K −, A −, and C–type transients, as well as a novel transient (S–type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants Aₒ = 5637.68(20) MHz, Bₒ = 1428.23(37) MHz, and Cₒ = 1138.90(48) MHz (1σ uncertainties). Combining the Aₒ, Bₒ, and Cₒ constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths rₑ(C₁–C₂) = 1.3849(4) Å, rₑ(C₂–C³) = 1.3917(4) Å, rₑ(C–F) = 1.3422(3) Å, and rₑ(C₂–H₂) = 1.0791(5) Å.
Resumo:
We have developed an alignment-free method that calculates phylogenetic distances using a maximum-likelihood approach for a model of sequence change on patterns that are discovered in unaligned sequences. To evaluate the phylogenetic accuracy of our method, and to conduct a comprehensive comparison of existing alignment-free methods (freely available as Python package decaf+py at http://www.bioinformatics.org.au), we have created a data set of reference trees covering a wide range of phylogenetic distances. Amino acid sequences were evolved along the trees and input to the tested methods; from their calculated distances we infered trees whose topologies we compared to the reference trees. We find our pattern-based method statistically superior to all other tested alignment-free methods. We also demonstrate the general advantage of alignment-free methods over an approach based on automated alignments when sequences violate the assumption of collinearity. Similarly, we compare methods on empirical data from an existing alignment benchmark set that we used to derive reference distances and trees. Our pattern-based approach yields distances that show a linear relationship to reference distances over a substantially longer range than other alignment-free methods. The pattern-based approach outperforms alignment-free methods and its phylogenetic accuracy is statistically indistinguishable from alignment-based distances.
Resumo:
Biomolecular interactions, including protein-protein, protein-DNA, and protein-ligand interactions, are of special importance in all biological systems. These interactions may occer during the loading of biomolecules to interfaces, the translocation of biomolecules through transmembrane protein pores, and the movement of biomolecules in a crowded intracellular environment. The molecular interaction of a protein with its binding partners is crucial in fundamental biological processes such as electron transfer, intracellular signal transmission and regulation, neuroprotective mechanisms, and regulation of DNA topology. In this dissertation, a customized surface plasmon resonance (SPR) has been optimized and new theoretical and label free experimental methods with related analytical calculations have been developed for the analysis of biomolecular interactions. Human neuroglobin (hNgb) and cytochrome c from equine heart (Cyt c) proteins have been used to optimize the customized SPR instrument. The obtained Kd value (~13 µM), from SPR results, for Cyt c-hNgb molecular interactions is in general agreement with a previously published result. The SPR results also confirmed no significant impact of the internal disulfide bridge between Cys 46 and Cys 55 on hNgb binding to Cyt c. Using SPR, E. coli topoisomerase I enzyme turnover during plasmid DNA relaxation was found to be enhanced in the presence of Mg2+. In addition, a new theoretical approach of analyzing biphasic SPR data has been introduced based on analytical solutions of the biphasic rate equations. In order to develop a new label free method to quantitatively study protein-protein interactions, quartz nanopipettes were chemically modified. The derived Kd (~20 µM) value for the Cyt c-hNgb complex formations matched very well with SPR measurements (Kd ~16 µM). The finite element numerical simulation results were similar to the nanopipette experimental results. These results demonstrate that nanopipettes can potentially be used as a new class of a label-free analytical method to quantitatively characterize protein-protein interactions in attoliter sensing volumes, based on a charge sensing mechanism. Moreover, the molecule-based selective nature of hydrophobic and nanometer sized carbon nanotube (CNT) pores was observed. This result might be helpful to understand the selective nature of cellular transport through transmembrane protein pores.
Resumo:
This thesis focuses on experimental and numerical studies of the hydrodynamic interaction between two vessels in close proximity in waves. In the model tests, two identical box-like models with round corners were used. Regular waves with the same wave steepness and different wave frequencies were generated. Six degrees of freedom body motions and wave elevations between bodies were measured in a head sea condition. Three initial gap widths were examined. In the numerical computations, a panel-free method based seakeeping program, MAPS0, and a panel method based program, WAMIT, were used for the prediction of body motions and wave elevations. The computed body motions and wave elevations were compared with experimental data.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
Objective: Several limitations of published bioelectrical impedance analysis (BIA) equations have been reported. The aims were to develop in a multiethnic, elderly population a new prediction equation and cross-validate it along with some published BIA equations for estimating fat-free mass using deuterium oxide dilution as the reference method. Design and setting: Cross-sectional study of elderly from five developing countries. Methods: Total body water (TBW) measured by deuterium dilution was used to determine fat-free mass (FFM) in 383 subjects. Anthropometric and BIA variables were also measured. Only 377 subjects were included for the analysis, randomly divided into development and cross-validation groups after stratified by gender. Stepwise model selection was used to generate the model and Bland Altman analysis was used to test agreement. Results: FFM = 2.95 - 3.89 (Gender) + 0.514 (Ht(2)/Z) + 0.090 (Waist) + 0.156 (Body weight). The model fit parameters were an R(2), total F-Ratio, and the SEE of 0.88, 314.3, and 3.3, respectively. None of the published BIA equations met the criteria for agreement. The new BIA equation underestimated FFM by just 0.3 kg in the cross-validation sample. The mean of the difference between FFM by TBW and the new BIA equation were not significantly different; 95% of the differences were between the limits of agreement of -6.3 to 6.9 kg of FFM. There was no significant association between the mean of the differences and their averages (r = 0.008 and p = 0.2). Conclusions: This new BIA equation offers a valid option compared with some of the current published BIA equations to estimate FFM in elderly subjects from five developing countries.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.
Resumo:
An alternative vector control method, using lambda-cyhalothrin impregnated wide-mesh gauze covering openings in the walls of the houses was developed in an area in the Eastern part of the interior of Suriname. Experimental hut observations showed that Anopheles darlingi greatly reduced their biting activity (99-100%) during the first 5 months after impregnation. A model assay showed high mortality both of mosquitoes repelled by the gauze as well as of those that succeeded in getting through it. A field application test in 270 huts showed good acceptance by the population and good durability of the applied gauze. After introducing the method in the entire working area, replacing DDT residual housespraying, the malaria prevalence, of 25-37% before application dropped and stabilized at between 5 and 10% within one year. The operational costs were less than those of the previously used DDT housespraying program, due to a 50% reduction in the cost of materials used. The method using widemesh gauze impregnated with lambdacyhalothrin strongly affects the behavior of An. darlingi. It is important to examine the effect of the method on malaria transmission further, since data indirectly obtained suggest substantial positive results.