914 resultados para mechanism of salt tolerant
Resumo:
In this study the hepatic lipoprotein lipase (LPL), activity was evaluated in adult female mice acclimatized at 5-C and submitted to carbon tetrachloride (CCI) or ethionine, in order to determine the possible role of this enzuyme in the fatty liver. The results were compared with those obtained in mice kept at room temperature (27-C) that the same hepatoesteatosis inducing agent. In contrast to animals kept at room temperature, in cold aclimatized mice neither the enhancement of the LPL-liver activity by the action of CCI or ethionine occurred nor the development of fatty infiltration in the liver was observed. We conclude that the low temperature induced a protective effect against CCI or ethionine-induced fatty liver that was correlated with the no-increase of the hepatic LPL activity.
Resumo:
The selectivity of Bacillus thuringiensis toxins is determined both by the toxin structure and by factors inherent to the insect. These toxins contain distinct domains that appear to be functionally important in toxin binding to protein receptors in the midgut of susceptible insects, and the subsequent formation of a pore in the insect midgut epithelium. In this article features necessary for the insecticidal activity of these toxins are discussed. These include toxin structure, toxin processing in the insect midgut, the identification of toxin receptors in susceptible insects, and toxin pore formation in midgut cells. In addition a number of B. thuringiensis toxins act synergistically to exert their full insecticidal activity. This synergistic action is critical not only for expressing the insecticidal activity of these toxins, but could also play a role in delaying the onset of insect resistance.
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
Resumo:
Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials.
Resumo:
The aim of this survey was to provide a snap shot of the salt content of soup from a range of catering outlets on the island.
Resumo:
The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two-dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D-loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark-field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.
Resumo:
A 46-year-old woman with a severe polyradiculoneuropathy treated with high-dose intravenous immunoglobulin (IVIg) presented an encephalopathy with increased blood flow velocities of the middle cerebral arteries (MCAs) detected by transcranial Doppler (TCD) studies. The similitude between this observation and another case recently reported of a patient suffering from Guillain-Barré syndrome (GBS) and cerebral blood flow abnormalities after IVIg treatment prompted us to investigate the responsibility of the IVIg therapy in the genesis of these blood flow alterations. We studied therefore by TCD 10 consecutive patients who underwent this treatment for different reasons. In 1 case we observed an asymptomatic, spontaneously reversible increase in the blood flow velocities of the MCAs consistent with a vasospasm and occurring 3-10 days after completion of the therapy. Stroke and ischemic encephalopathy have been reported as possible complications of IVIg treatment. In the case under discussion, clinical events appeared shortly after the administration of the IVIg therapy and responded favorably to a treatment with nimodipine. Other etiopathogenic mechanisms, in particular a CNS vasculopathic process related to the GBS itself, have to be considered as well. Further studies, with a larger number of patients, are therefore needed to evaluate the underlying mechanisms of blood flow abnormalities occurring sometimes in GBS patients after IVIg treatment.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.
Resumo:
The brain-spliced isoform of Myosin Va (BR-MyoVa) plays an important role in the transport of dense core secretory granules (SGs) to the plasma membrane in hormone and neuropeptide-producing cells. The molecular composition of the protein complex that recruits BR-MyoVa to SGs and regulates its function has not been identified to date. We have identified interaction between SG-associated proteins granuphilin-a/b (Gran-a/b), BR-MyoVa and Rab27a, a member of the Rab family of GTPases. Gran-a/b-BR-MyoVa interaction is direct, involves regions downstream of the Rab27-binding domain, and the C-terminal part of Gran-a determines exon specificity. MyoVa and Gran-a/b are partially colocalised on SGs and disruption of Gran-a/b-BR-MyoVa binding results in a perinuclear accumulation of SGs which augments nutrient-stimulated hormone secretion in pancreatic beta-cells. These results indicate the existence of at least another binding partner of BR-MyoVa that was identified as rabphilin-3A (Rph-3A). BR-MyoVa-Rph-3A interaction is also direct and enhanced when secretion is activated. The BR-MyoVa-Rph-3A and BR-MyoVa-Gran-a/b complexes are linked to a different subset of SGs, and simultaneous inhibition of these complexes nearly completely blocks stimulated hormone release. This study demonstrates that multiple binding partners of BR-MyoVa regulate SG transport, and this molecular mechanism is universally used by neuronal, endocrine and neuroendocrine cells.
Resumo:
This manuscript reports on a project to examine the feasibility of extensive radio frequency identification (RFID) tagging to determine product provenance in the meat production industry. The investigators examined existing technologies and meat production processes as well as emerging technologies in RFID tagging to assess the potential of RFID technologies for provenance assurance. While RFID technologies hold tremendous promise for traceability, the current state of the technology and production process creates challenges for effectively creating full traceability. However, RFID holds tremendous potential for improving processing throughput, which will help make RFIDbased traceability more attractive for adoption by meat processors.
Resumo:
A national survey showed that Swiss people eat high quantity of salt (9.1 g per day on average). The Swiss Federal Office of Public Health (FOPH) has launched a strategy to reduce salt intake in the population in order to decrease cardiovascular morbidity and mortality, mainly via blood pressure reduction. The most effective public health measures are to reduce the salt content of processed food rich in salt because they do not need to change consumers' eating behaviours. The FOPH has chosen to collaborate with the food industry on a voluntary basis. Regular population-based surveys will be needed to monitor the impact of current measures on salt consumption, hypertension prevalence as well as cardiovascular morbidity and mortality in the years to come.
Resumo:
Excessive salt intake increases the risk of developing hypertension and cardiovascular disease. Sodium intake remains high both in developed and emerging countries. The Swiss Federal Office of Public Health has ordered a national survey on the salt intake in Switzerland, realized in different centers. This article presents the results of the awareness of the Swiss population concerning the relationship between excessive salt intake and health. This survey reveals a lack of knowledge regarding the association between high salt intake and cardiovascular disease, the sodium content of usual food, and the recommended daily value of sodium intake. Strategies to reduce salt consumption need to be reinforced by collaborations between health authorities and health care professionals.
Resumo:
SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.
Resumo:
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.