953 resultados para maximum likelihood analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical methods of analysing time series by Box-Jenkins approach assume that the observed series uctuates around changing levels with constant variance. That is, the time series is assumed to be of homoscedastic nature. However, the nancial time series exhibits the presence of heteroscedasticity in the sense that, it possesses non-constant conditional variance given the past observations. So, the analysis of nancial time series, requires the modelling of such variances, which may depend on some time dependent factors or its own past values. This lead to introduction of several classes of models to study the behaviour of nancial time series. See Taylor (1986), Tsay (2005), Rachev et al. (2007). The class of models, used to describe the evolution of conditional variances is referred to as stochastic volatility modelsThe stochastic models available to analyse the conditional variances, are based on either normal or log-normal distributions. One of the objectives of the present study is to explore the possibility of employing some non-Gaussian distributions to model the volatility sequences and then study the behaviour of the resulting return series. This lead us to work on the related problem of statistical inference, which is the main contribution of the thesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators. The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We apply the second-order skewness formula to a normal model with a generalized parametrization and to an ARMA model. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical q-ball imaging is widely used for reconstruction of orientation distribution function (ODF) using diffusion weighted MRI data. Estimating the spherical harmonic coefficients is a critical step in this method. Least squares (LS) is widely used for this purpose assuming the noise to be additive Gaussian. However, Rician noise is considered as a more appropriate model to describe noise in MR signal. Therefore, the current estimation techniques are valid only for high SNRs with Gaussian distribution approximating the Rician distribution. The aim of this study is to present an estimation approach considering the actual distribution of the data to provide reliable results particularly for the case of low SNR values. Maximum likelihood (ML) is investigated as a more effective estimation method. However, no closed form estimator is presented as the estimator becomes nonlinear for the noise assumption of the Rician distribution. Consequently, the results of LS estimator is used as an initial guess and the more refined answer is achieved using iterative numerical methods. According to the results, the ODFs reconstructed from low SNR data are in close agreement with ODFs reconstructed from high SNRs when Rician distribution is considered. Also, the error between the estimated and actual fiber orientations was compared using ML and LS estimator. In low SNRs, ML estimator achieves less error compared to the LS estimator.