958 resultados para matrix associated laser desorption ionization mass spectrometry
Resumo:
Alguns Bastonetes Gram-negativos não fermentadores (BGNNF) costumam ser considerados clinicamente pouco significantes e a sua implicação em infecções é subestimada. Devido à similaridade fenotípica, mudanças taxonômicas, baixa reatividade bioquímica e limitações nos bancos de dados em sistemas comerciais, a identificação de BGNNF é frequentemente equivocada, culminando com a denominação de diferentes micro-organismos apenas como BGNNF, por falta de melhor diferenciação. O objetivo desse estudo foi avaliar, por métodos fenotípico convencional, proteômico e molecular, a identificação de BGNNF incomuns isolados em hemoculturas de pacientes atendidos em um hospital universitário no Rio de Janeiro. Foram selecionadas 78 amostras isoladas de hemoculturas caracterizadas no laboratório clinico como BGNNF para a identificação por sequenciamento dos genes 16S RNA e recA, por um conjunto amplo de testes fenotípicos manuais e por MALDI-TOF MS. Os micro-organismos predominantes na amostragem foram genotipados pela técnica de eletroforese em gel de campo pulsado (PFGE). Pelo sequenciamento do gene 16S rRNA, a maioria das amostras (n=31; 40%) foi incluída no gênero Burkholderia, seguido de Pseudomonas stutzeri (10%) e Delftia acidovorans (4%). Os demais isolados foram agrupados em 27 diferentes espécies. O sequencimento do gene recA identificou a maioria das espécies de Burkholderia como Burkholderia contaminans (n=19; 24%). Os testes fenotípicos incluíram as 31 amostras apenas no CBc e para as outras 47 amostras, a concordância com o sequenciamento do gene 16S rRNA em nível de espécie foi de 64% (n=30) e apenas em gênero a concordância foi de 17% (n=8). A análise comparativa geral da identificação por MALDI-TOF MS com o sequenciamento do gene16S rRNA mostrou que 42% (n=33) das 78 amostras foram concordantes em nível de espécie e 45% (n=35) apenas em gênero. Excluindo as amostras do CBc, houve um aumento da concordância em nível de espécie para 60%. As discordâncias parecem ser devido às diferenças nos perfis proteicos das amostras em relação às amostras-referência do banco de dados do equipamento e podem ser aprimorados com a atualização de perfis no sistema. A análise do polimorfismo genético de B. contaminans mostrou a ausência de um clone disseminado causando surto, além da provável origem ambiental das infecções. Os setores de nefrologia e hemodiálise contribuíram com maior número de pacientes com amostras positivas (5 pacientes e 9 amostras). Os grupos clonais BcoD e BcoE foram encontrados em pacientes assistidos no mesmo setor com diferença de quatro meses (BcoD, nefrologia) e 1,5 ano (BcoE, hemodilálise), entre as culturas, respectivamente. As discordâncias entre as técnicas ocorreram principalmente devido a dificuldade de identificação das espécies do CBc. Os BGNNF incomuns são de difícil caracterização independente da metodologia usada e nenhum método por si só foi capaz de identificar todas as amostras.
Resumo:
Sodium dodecyl sulfate(SDS) is a powerful solubilizing detergent which is often used during the separation of highly complex protein mixtures by one- or two-dimensional (2D) gel electrophoresis. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely used technique for mass spectrometric analysis of some protein molecules compared to other techniques. But the presence of SDS or some salts usually leads to signal deterioration when using MALDI-MS. A method for using nitrocellulose membrane as the solid-phase carrier combined with n-octyl-beta-D-glucopyranoside in the matrix highly enhances the sensitivity of the molecular mass determination of lysozyme. This technique has the advantage that the signal-to-noise of the molecular weight profile is improved compared with the mass spectrum and the profile is relatively easy to interpret.
Resumo:
Rabies virus was used as the antigen to immunize laying chickens. Anti-rabies virus immunoglobulin Y(IgY) was isolated from yolks of the eggs laid by these chickens using a two-step salt precipitation and one-step gel filtration protocol. The purified IgY was reduced with dithiothreitol, and heavy chains (HC) and light chains (LC) were obtained. In addition, the purified IgY was digested with pepsin and the fragment with specific antigen binding properties (Fab) was produced. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS), the average molecular weights of IgY, HC, LC, and Fab were determined as 167 250, 65 105, 18 660, and 45,359 Da, respectively. IgY has two structural differences compared with mammalian IgGs. First, the molecular weight of the heavy chain of IgY is larger than that of its mammalian counterpart, while the molecular weight of the light chain of IgY is smaller. Second, upon pepsin digestion, anti-rabies virus IgY is degraded into Feb, in contrast to mammalian IgG, which has been reported to be degraded into F(ab')(2) under the same conditions. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
We have established a differential peptide display method, based on a mass spectrometric technique, to detect peptides that show semiquantitative changes in the neurointermediate lobe (NIL) of individual rats subjected to salt-loading. We employed matrix-assisted laser desorption/ionization mass spectrometry, using a single-reference peptide in combination with careful scanning of the whole crystal rim of the matrix-analyte preparation, to detect in a semiquantitative manner the molecular ions present in the unfractionated NIL homogenate. Comparison of the mass spectra generated from NIL homogenates of salt-loaded and control rats revealed a selective and significant decrease in the intensities of several molecular ion species of the NIL homogenates from salt-loaded rats. These ion species, which have masses that correspond to the masses of oxytocin, vasopressin, neurophysins, and an unidentified putative peptide, were subsequently chemically characterized. We confirmed that the decreased molecular ion species are peptides derived exclusively from propressophysin and prooxyphysin (i.e., oxytocin, vasopressin, and various neurophysins). The putative peptide is carboxyl-terminal glycopeptide. The carbohydrate moiety of the latter peptide was determined by electrospray tandem MS as bisected biantennary Hex3HexNAc5Fuc. This posttranslational modification accounts for the mass difference between the predicted mass of the peptide based on cDNA studies and the measured mass of the mature peptide.
Resumo:
The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome.
Resumo:
We have previously shown that isoprenylation and/or additional pest-translational processing of the G protein gamma(1) subunit carboxyl terminus is required for beta(1) gamma(1) subunit stimulation of phospholipase C-beta(2) (PLC beta(2)) [Dietrich, A., Meister, M., Brazil, D., Camps, M., & Gierschik, P. (1994) Eur. J. Biochem. 219, 171-178]. To examine whether isoprenylation of the gamma(1) subunit alone is sufficient for beta(1) gamma(1)-mediated PLC beta(2) stimulation or whether any of the two subsequent modifications, proteolytic removal of the carboxyl-terminal tripeptide and/or carboxylmethylation, is required for this effect, nonisoprenylated recombinant beta(1) gamma(1) dimers were produced in baculovirus-infected insect cells, purified to near homogeneity, and then isoprenylated in vitro using purified recombinant protein farnesyltransferase. Analysis of the beta(1) gamma(1) dimer after in vitro farnesylation by reversed phase high-performance liquid chromatography followed by delayed extraction matrix-assisted laser desorption/ionization mass spectrometry confirmed that the gamma(1) subunit was carboxyl-terminally farnesylated but not proteolyzed and carboxylmethylated. Functional reconstitution of in vitro-farnesylated beta(1) gamma(1) dimers with a recombinant PLC beta(2) isozyme revealed that farnesylation rendered recombinant nonisoprenylated beta(1) gamma(1) dimers capable of stimulating PLC beta(2) and that the degree of this stimulation was only approximately 45% lower for in vitro-farnesylated beta(1) gamma(1) dimers than for fully modified native beta(1) gamma(1) purified from bovine retinal rod outer segments. Taken together, these results suggest that isoprenylation of the gamma subunit is both necessary and sufficient for beta gamma dimer-mediated stimulation of phospholipase C.
Resumo:
Les essais préliminaires pour préparer des alcoolates de fer à partir du bichlorure ou bibromure de fer (II), en les combinant avec des ligands de type diimino pyridine, ont engendré la formation de complexes homoleptiques et hétéroleptiques, dépendant des substituants sur les branches imines du ligand. Ces complexes homoleptiques octaédriques et paramagnétiques ont été étudiés par rapport à leurs propriétés spectroscopiques et cristallographiques. De plus, la synthèse des complexes de fer hétéroleptique a engendré de bons précurseurs penta-coordonnés pour les réactions de substitution de ligands avec des alcoolates de métaux alcalins, de manière à produire les dialcoolates de fer (II) désirés. Des techniques d’analyse telles que la spectroscopie UV-vis, l’analyse élémentaire, la spectrométrie de masse à haute résolution et la cristallographie aux rayons X ont été utilisées pour caractériser ces complexes de fer. L’activité catalytique de ces complexes de fer (II) a aussi été étudiée par rapport à la polymérisation du lactide; les dialcoolates convoités ont été générés in-situ en raison de la difficulté à produire et à isoler les dérivés alcoolates des complexes diimino pyridine de fer. Une étude approfondie a aussi été faite sur les réactions de polymérisation, surtout par rapport aux valeurs de conversion à l’échelle du temps, ainsi qu’à la tacticité des chaines de polymères obtenues. Ces analyses ont été effectuées par l’entremise de la spectroscopie de résonance magnétique nucléaire, de la chromatographie d’exclusion stérique, et de la spectrométrie de masse MALDI (désorption-ionisation laser assistée par matrice).
Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10
Resumo:
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The most abundant cell types in the hemolymph of Cupiennius salei are plasmatocytes (70–80%) and granulocytes (20–30%). Both cells differ in shape, cytochemical and transmission electron microscopy staining of their cytoplasma and granules. According to MALDI-IMS (matrix-assisted laser desorption ionization mass spectrometry imaging), granulocytes exhibit ctenidin 1 (9510 Da) and ctenidin 3 (9568 Da), SIBD-1 (8675 Da), and unknown peptides with masses of 2207 and 6239 Da. Plasmatocytes exhibit mainly a mass of 6908 Da. Unknown peptides with masses of 1546 and 1960 Da were detected in plasmatocytes and granulocytes. Transmission electron microscopy confirms the presence of two compounds in one granule and cytochemical staining (light microscopy) tends to support this view. Two further hemocyte types (cyanocytes containing hemocyanin and prehemocytes as stem cells) are only rarely detected in the hemolymph. These four hemocyte types constitute the cellular part of the spider immune system and this is discussed in view of arachnid hemocyte evolution.