992 resultados para mass-rearing
Resumo:
This research studied the effects of additional fiber in the rearing phase diets on egg production, gastrointestinal tract (GIT) traits, and body measurements of brown egg-laying hens fed diets varying in energy concentration from 17 to 46 wk of age. The experiment was completely randomized with 10 treatments arranged as a 5 × 2 factorial with 5 rearing phase diets and 2 laying phase diets. During the rearing phase, treatments consisted of a control diet based on cereals and soybean meal and 4 additional diets with a combination of 2 fiber sources (cereal straw and sugar beet pulp, SBP) at 2 levels (2 and 4%). During the laying phase, diets differed in energy content (2,650 vs. 2,750 kcal AMEn/kg) but had the same amino acid content per unit of energy. The rearing diet did not affect any production trait except egg production that was lower in birds fed SBP than in birds fed straw (91.6 and 94.1%, respectively; P < 0.05). Laying hens fed the high energy diet had lower feed intake (P < 0.001), better feed conversion (P < 0.01), and greater BW gain (P < 0.05) than hens fed the low energy diet but egg production and egg weight were not affected. At 46 wk of age, none of the GIT traits was affected by previous dietary treatment. At this age, hen BW was positively related with body length (r = 0.500; P < 0.01), tarsus length (r = 0.758; P < 0.001), and body mass index (r = 0.762; P < 0.001) but no effects of type of diet on these traits were detected. In summary, the inclusion of up to 4% of a fiber source in the rearing diets did not affect GIT development of the hens but SBP reduced egg production. An increase in the energy content of the laying phase diet reduced ADFI and improved feed efficiency but did not affect any of the other traits studied.
Resumo:
The ornate tropical rock lobster, Panulirus ornatus has substantial potential as an aquaculture species though disease outbreaks during the animal's extended larval lifecycle are major constraints for success. In order to effectively address such disease-related issues, an improved understanding of the composition and dynamics of the microbial communities in the larval rearing tanks is required. This study used flow cytometry and molecular microbial techniques (clone libraries and denaturing gradient gel electrophoresis (DGGE)) to quantify and characterise the microbial community of the water column in the early stages (developmental stage I-II) of a P. ornatus larval rearing system. DGGE analysis of a 5000 L larval rearing trial demonstrated a dynamic microbial community with distinct changes in the community structure after initial stocking (day I to day 2) and from day 4 to day 5, after which the structure was relatively stable. Flow cytometry analysis of water samples taken over the duration of the trial demonstrated a major increase in bacterial load leading up to and peaking on the first day of the initial larval moult (day 7), before markedly decreasing prior to when > 50% of larvae moulted (day 9). A clone library of a day 10 water sample taken following a mass larval mortality event reflected high microbial diversity confirmed by statistical analysis indices. Sequences retrieved from both clone library and DGGE analyses were dominated by gamma- and alpha-Proteobacteria affiliated organisms with additional sequences affiliated with beta- and epsilon-Proteobacteria, Bacteroidetes, Cytophagales and Chlamydiales groups. Vibrio affiliated species were commonly retrieved in the clone library, though absent from DGGE analysis.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.
Resumo:
Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.
Resumo:
Marketers and commercial media alike are confronted by shifts in the social relations of media production and consumption in the global services economy, including the challenge of capturing, managing and commercialising media-user productivity. This trajectory of change in media cultures and economies is described here as ‘mass conversation’. Two media texts and a new media object provide a starting point for charting the ascendance and social impact of mass conversation. Apple’s 1984 television commercial, which launched the Macintosh computer, inverted George Orwell’s dystopian vision of the social consequences of panoptic communications systems. It invoked a revolutionary rhetoric to anticipate the social consequences of a new type of interactivity since theorised as ‘intercreativity’. This television commercial is contrasted with another used in Nike’s 2006 launch of its Nike+ (Apple iPod) system. The Nike+ online brand community is also used to consider how a multiplatform brand channel is seeking to manage the changing norms and practices of consumption and end-user agency. This analysis shows that intercreativity modifies the operations of ‘Big Brother’ but serves the more mundane than revolutionary purpose of generating commercial value from the affective labour of end-users.
Resumo:
Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.