330 resultados para manipulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high capital cost of robots prohibit their economic application. One method of making their application more economic is to increase their operating speed. This can be done in a number of ways e.g. redesign of robot geometry, improving actuators and improving control system design. In this thesis the control system design is considered. It is identified in the literature review that two aspects in relation to robot control system design have not been addressed in any great detail by previous researchers. These are: how significant are the coupling terms in the dynamic equations of the robot and what is the effect of the coupling terms on the performance of a number of typical independent axis control schemes?. The work in this thesis addresses these two questions in detail. A program was designed to automatically calculate the path and trajectory and to calculate the significance of the coupling terms in an example application of a robot manipulator tracking a part on a moving conveyor. The inertial and velocity coupling terms have been shown to be of significance when the manipulator was considered to be directly driven. A simulation of the robot manipulator following the planned trajectory has been established in order to assess the performance of the independent axis control strategies. The inertial coupling was shown to reinforce the control torque at the corner points of the trajectory, where there was an abrupt demand in acceleration in each axis but of opposite sign. This reduced the tracking error however, this effect was not controllable. A second effect was due to the velocity coupling terms. At high trajectory speeds it was shown, by means of a root locus analysis, that the velocity coupling terms caused the system to become unstable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant structures created along a thin capillary by nanoscale deformation of its surface can perform comprehensive sensing and manipulation of microfluids. The concept is illustrated with a model of triangular bottle resonator and floating microparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a completely kinematostaticaly decoupled XY compliant parallel manipulator (CPM) composed of exactly-constrained compliant modules. A new 4-PP XY translational parallel mechanism (TPM) with a new topology structure is firstly proposed where each two P (P: prismatic) joints on the base in two non-adjacent legs are rigidly connected. A novel 4-PP XY CPM is then obtained by replacing each traditional P join on the base in the 4-PP XY TPM with a compound basic parallelogram module (CBPM) and replacing each traditional P joint on the motion stage with a basic parallelogram module (BPM). Approximate analytical model is derived with comparison to the FEA (finite element analysis) model and experiment for a case study. The proposed novel XY CPM has a compact configuration with good dynamics, and is able to well constrain the parasitic rotation and the cross-axis coupling of the motion stage. The cross-axis motion of the input stage can be completely eliminated, and the lost motion between the input stage and the motion stage is significantly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, fault-tolerant control of redundant planar serial manipulators has been investigated experimentally via an offline method called psuedo-inverse reconfiguration method. Minimizing the end-effector's velocity jump via an optimal mapping of joint failures into healthy joints velocity space can be regarded as the main contribution of this reconfiguration approach. This algorithm has been simulated and implemented on a four-link serial manipulator named as TaArm. It should be mentioned that for simulation and practical tests, C++ programming language in QtCreator environment has been used which provided high computational speed. Two scenarios has been selected for simulation and implementation studies and results shows that the algorithm considerably removes the velocity jump of the end-effector in both simulation and experimetal studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although parallel manipulators provide several benefits compared to similar-sized serial manipulators, they typically exhibit a limited rotational workspace. One approach to designing a parallel manipulator with infinite range of tool rotation around one axis is to introduce kinematic redundancy. This is typically achieved by extending a non-redundant mechanism with an additional actuator and a supplemental degree of freedom, while the degrees of freedom of the tool platform remain the same. The main drawback of this approach is the cost of the additional actuator. In this paper, we discuss the possibility of harvesting the motion in the additional degree of freedom to operate a gripper. The benefits of the proposed idea include saving the cost of a gripper actuator and reducing the mass of the manipulated platform. Additionally, the requirement to provide the manipulated platform with compressed air or electric power is removed. Several variants of a kinematically redundant manipulated platform with five degrees of freedom are introduced along with conceptual mechanical designs for transforming the redundant platform motion into the opening and closing of a gripper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SCARA-Tau parallel manipulator was derived with the objective to overcome the limited workspace-to-footprint ratio of the DELTA parallel manipulator while maintaining its many benefits. The SCARA-Tau family has later been extended and a large number of variants have been proposed. In this paper, we analyse four of these variants, which together encompass the main differences between all the proposed SCARA-Tau manipulators. The analysed manipulator variants utilise an identical arrangement of five of the six linkages connecting the actuated arms and the manipulated platform and exhibit the same input-output Jacobian. The normalised reciprocal product between the wrench of the sixth linkage and the twist of the platform occurring without this linkage provides a measure on how effectively the sixth linkage constrains the manipulated platform. A comparison of the manipulator variants with respect to this measure demonstrates each variants suitability for specific applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research into underwater robotic applications is currently a growing field. There are many challenges involved in underwater robotics that are not present in other mediums, such as how the harsh environmental conditions that this environment invokes onto the robot and any equipment that is attached to the robot. In this paper an attachment to an underwater gripper is proposed that adds another Degree Of Freedom to the system, thus allowing the gripper to move along the belly of the robot. Adding this functionality to the gripper has many advantages, some of which involve the robot being able to easily pass a collected object to another robot with minimal interference. This attachment is constructed using 3D printed parts, a waterproofed servomotor and a leadscrew to provide linear motion to a commercial gripper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple and intuitive approach to determining the kinematic parameters of a serial-link robot in Denavit– Hartenberg (DH) notation. Once a manipulator’s kinematics is parameterized in this form, a large body of standard algorithms and code implementations for kinematics, dynamics, motion planning, and simulation are available. The proposed method has two parts. The first is the “walk through,” a simple procedure that creates a string of elementary translations and rotations, from the user-defined base coordinate to the end-effector. The second step is an algebraic procedure to manipulate this string into a form that can be factorized as link transforms, which can be represented in standard or modified DH notation. The method allows for an arbitrary base and end-effector coordinate system as well as an arbitrary zero joint angle pose. The algebraic procedure is amenable to computer algebra manipulation and a Java program is available as supplementary downloadable material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of high-speed machine vision for close-loop position control, or visual servoing, of a robot manipulator. It provides a comprehensive coverage of all aspects of the visual servoing problem: robotics, vision, control, technology and implementation issues. While much of the discussion is quite general the experimental work described is based on the use of a high-speed binary vision system with a monocular "eye-in-hand" camera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pull-out force of some outer walls against other inner walls in multi-walled carbon nanotubes (MWCNTs) was systematically studied by molecular mechanics simulations. The obtained results reveal that the pull-out force is proportional to the square of the diameter of the immediate outer wall on the sliding interface, which highlights the primary contribution of the capped section of MWCNT to the pull-out force. A simple empirical formula was proposed based on the numerical results to predict the pull-out force for an arbitrary pull-out in a given MWCNT directly from the diameter of the immediate outer wall on the sliding interface. Moreover, tensile tests for MWCNTs with and without acid-treatment were performed with a nanomanipulator inside a vacuum chamber of a scanning electron microscope (SEM) to validate the present empirical formula. It was found that the theoretical pull-out forces agree with the present and some previous experimental results very well.