997 resultados para lung capacity
Resumo:
BACKGROUND: The impact of abnormal spirometric findings on risk for incident heart failure among older adults without clinically apparent lung disease is not well elucidated.METHODS: We evaluated the association of baseline lung function with incident heart failure, defined as first hospitalization for heart failure, in 2125 participants of the community-based Health, Aging, and Body Composition (Health ABC) Study (age, 73.6 +/- 2.9 years; 50.5% men; 62.3% white; 37.7% black) without prevalent lung disease or heart failure. Abnormal lung function was defined either as forced vital capacity (FVC) or forced expiratory volume in 1(st) second (FEV1) to FVC ratio below lower limit of normal. Percent predicted FVC and FEV1 also were assessed as continuous variables.RESULTS: During follow-up (median, 9.4 years), heart failure developed in 68 of 350 (19.4%) participants with abnormal baseline lung function, as compared with 172 of 1775 (9.7%) participants with normal lung function (hazard ratio [HR] 2.31; 95% confidence interval [CI], 1.74-3.07; P <.001). This increased risk persisted after adjusting for previously identified heart failure risk factors in the Health ABC Study, body mass index, incident coronary heart disease, and inflammatory markers (HR 1.83; 95% CI, 1.33-2.50; P <.001). Percent predicted (%) FVC and FEV 1 had a linear association with heart failure risk (HR 1.21; 95% CI, 1.11-1.32 and 1.18; 95% CI, 1.10-1.26, per 10% lower % FVC and % FEV1, respectively; both P <.001 in fully adjusted models). Findings were consistent in sex and race subgroups and for heart failure with preserved or reduced ejection fraction.CONCLUSIONS: Abnormal spirometric findings in older adults without clinical lung disease are associated with increased heart failure risk. (C) 2011 Elsevier Inc. All rights reserved. The American Journal of Medicine (2011) 124, 334-341
Resumo:
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.
Resumo:
In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.
Resumo:
Lung hyperinflation up to vital capacity is used to re-expand collapsed lung areas and to improve gas exchange during general anesthesia. However, it may induce inflammation in normal lungs. The objective of this study was to evaluate the effects of a lung hyperinflation maneuver (LHM) on plasma cytokine release in 10 healthy subjects (age: 26.1 ± 1.2 years, BMI: 23.8 ± 3.6 kg/m²). LHM was performed applying continuous positive airway pressure (CPAP) with a face mask, increased by 3-cmH2O steps up to 20 cmH2O every 5 breaths. At CPAP 20 cmH2O, an inspiratory pressure of 20 cmH2O above CPAP was applied, reaching an airway pressure of 40 cmH2O for 10 breaths. CPAP was then decreased stepwise. Blood samples were collected before and 2 and 12 h after LHM. TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12 were measured by flow cytometry. Lung hyperinflation significantly increased (P < 0.05) all measured cytokines (TNF-α: 1.2 ± 3.8 vs 6.4 ± 8.6 pg/mL; IL-1β: 4.9 ± 15.6 vs 22.4 ± 28.4 pg/mL; IL-6: 1.4 ± 3.3 vs 6.5 ± 5.6 pg/mL; IL-8: 13.2 ± 8.8 vs 33.4 ± 26.4 pg/mL; IL-10: 3.3 ± 3.3 vs 7.7 ± 6.5 pg/mL, and IL-12: 3.1 ± 7.9 vs 9 ± 11.4 pg/mL), which returned to basal levels 12 h later. A significant correlation was found between changes in pro- (IL-6) and anti-inflammatory (IL-10) cytokines (r = 0.89, P = 0.004). LHM-induced lung stretching was associated with an early inflammatory response in healthy spontaneously breathing subjects.
Resumo:
It has been well-documented that leukotrienes (LTs) are released in allergic lung inflammation and that they participate in the physiopathology of asthma. A role for LTs in innate immunity has recently emerged: Cys-LTs were shown to enhance Fc gamma R-mediated phagocytosis by alveolar macrophages (AMs). Thus, using a rat model of asthma, we evaluated Fc gamma R-mediated phagocytosis and killing of Klebsiella pneumoniae by AMs. The effect of treatment with a cys-LT antagonist (montelukast) on macrophage function was also investigated. Male Wistar rats were immunized twice with OVA/alumen intraperitoneally and challenged with OVA aerosol. After 24 h, the animals were killed, and the AMs were obtained by bronchoalveolar lavage. Macrophages were cultured with IgG-opsonized red blood cells (50: 1) or IgG-opsonized K. pneumoniae (30: 1), and phagocytosis or killing was evaluated. Leukotriene C(4) and nitric oxide were quantified by the EIA and Griess methods, respectively. The results showed that AMs from sensitized and challenged rats presented a markedly increased phagocytic capacity via Fc gamma R (10X compared to controls) and enhanced killing of K. pneumoniae (4X higher than controls). The increased phagocytosis was inhibited 15X and killing 3X by treatment of the rats with montelukast, as compared to the non-treated group. cys-LT addition increased phagocytosis in control AMs but had no effect on macrophages from allergic lungs. Montelukast reduced nitric oxide (39%) and LTC(4) (73%). These results suggest that LTs produced during allergic lung inflammation potentiate the capacity of AMs to phagocytose and kill K. pneumonia via Fc gamma R. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Oxidative damage to DNA is thought to play a role in carcinogenesis by causing Mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial, DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was upregulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.
Resumo:
OBJETIVO: Verificar se os testes: Volume Expiratório Forçado no 1º segundo (VEF1), Teste de Caminhada de 6 minutos (TC6) e Teste de Escada (TE) se alteram proporcionalmente ao pulmão funcionante ressecado. MÉTODOS: Foram incluídos pacientes candidatos a toracotomia para ressecção pulmonar. No pré-operatório (pré) e no mínimo três meses após a cirurgia (pós), realizaram espirometria, TC6 e TE. O TE foi realizado em escada com 12,16m de altura. O tempo para subir todos os degraus o mais rápido possível foi chamado tempo de escada (tTE). Os cálculos dos valores dos testes preditos para o pós-operatório (ppo) foram realizados conforme o número de segmentos funcionantes perdidos. Os valores pré, ppo e pós foram comparados entre si para cada teste. Estatística: foi utilizada a análise de variância para medidas repetidas (ANOVA), com significância de 5%. RESULTADOS: Foram estudados 40 pacientes. A ressecção pulmonar variou desde o ganho de dois segmentos funcionantes até a perda de 9. Os valores pré, ppo e pós foram respectivamente: VEF1 -pré = 2,6±0,8L, ppo = 2,3±0,8L, pós = 2,3±0,8L (VEF1pré > VEF1ppo = VEF1pós), TC6-pré = 604±63m, ppo = 529±103m, pós = 599±74m (TC6pré = TC6pós > TC6ppo), tTE-pré = 32,9±7,6s, ppo = 37,8±12,1s, pós = 33,7±8,5s (tTEpré = tTEpós < tTEppo). CONCLUSÃO: Nas ressecções pulmonares, este grupo de pacientes perdeu função pulmonar medida através da espirometria, mas não perdeu a capacidade de exercício, medida através dos testes de escada e caminhada.
Resumo:
The diagnosis of tuberculosis is seriously hampered in the absence of standard biosafety laboratory facilities for specimen concentration and Mycobacterium tuberculosis culture. Within a laboratory twinning arrangement, heat-fixed direct smear and sediment from 74 bleach-processed and 20 non-processed specimens from Cumura Hospital, Guinea-Bissau, were sent to Lisbon for molecular evaluation of rifampicin resistance. Sequence analysis of a 369 base-pair ppoB locus detected 3.2% (3/94) resistant specimens. To our knowledge, this represents the first report on the molecular analysis of M. tuberculosis from bleach-processed sputum, an alternative to current diagnostic practice in low-resource settings.
Resumo:
Emphysema is a chronic obstructive pulmonary disease characterized abnormal dilatation of alveolar spaces, which impairs alveolar gas exchange, compromising the physical capacity of a patient due to airflow limitations. Here we tested the effects of G-CSF administration in pulmonary tissue and exercise capacity in emphysematous mice. C57Bl/6 female mice were treated with elastase intratracheally to induce emphysema. Their exercise capacities were evaluated in a treadmill. Lung histological sections were prepared to evaluate mean linear intercept measurement. Emphysematous mice were treated with G-CSF (3 cycles of 200 μg/kg/day for 5 consecutive days, with 7-day intervals) or saline and submitted to a third evaluation 8 weeks after treatment. Values of run distance and linear intercept measurement were expressed as mean ± SD and compared applying a paired t-test. Effects of treatment on these parameters were analyzed applying a Repeated Measures ANOVA, followed by Tukey's post hoc analysis. p < 0.05 was considered statistically significant. Twenty eight days later, animals ran significantly less in a treadmill compared to normal mice (549.7 ± 181.2 m and 821.7 ± 131.3 m, respectively; p < 0.01). Treatment with G-CSF significantly increased the exercise capacity of emphysematous mice (719.6 ± 200.5 m), whereas saline treatment had no effect on distance run (595.8 ± 178.5 m). The PCR cytokines genes analysis did not detect difference between experimental groups. Morphometric analyses in the lung showed that saline-treated mice had a mean linear intercept significantly higher (p < 0.01) when compared to mice treated with G-CSF, which did not significantly differ from that of normal mice. Treatment with G-CSF promoted the recovery of exercise capacity and regeneration of alveolar structural alterations in emphysematous mice. © 2013.
Resumo:
Background: The use of biomass for cooking and heating is considered an important factor associated with respiratory diseases. However, few studies evaluate the amount of particulate matter less than 2.5 mu in diameter (PM2.5), symptoms and lung function in the same population. Objectives: To evaluate the respiratory effects of biomass combustion and compare the results with those of individuals from the same community in Brazil using liquefied petroleum gas (Gas). Methods: 1402 individuals in 260 residences were divided into three groups according to exposure (Gas, Indoor-Biomass, Outside-Biomass). Respiratory symptoms were assessed using questionnaires. Reflectance of paper filters was used to assess particulate matter exposure. In 48 residences the amount of PM2.5 was also quantified. Pulmonary function tests were performed in 120 individuals. Results: Reflectance index correlated directly with PM2.5 (r=0.92) and was used to estimate exposure (ePM2.5). There was a significant increase in ePM2.5 in Indoor-Biomass and Outside-Biomass, compared to Gas. There was a significantly increased odds ratio (OR) for cough, wheezing and dyspnea in adults exposed to Indoor-Biomass (OR=2.93, 2.33, 2.59, respectively) and Outside-Biomass (OR=1.78, 1.78, 1.80, respectively) compared to Gas. Pulmonary function tests revealed both Non-Smoker-Biomass and Smoker-Gas individuals to have decreased %predicted-forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) as compared to Non-Smoker-Gas. Pulmonary function tests data was inversely correlated with duration and ePM2.5. The prevalence of airway obstruction was 20% in both Non-Smoker-Biomass and Smoker-Gas subjects. Conclusion: Chronic exposure to biomass combustion is associated with increased prevalence of respiratory symptoms, reduced lung function and development of chronic obstructive pulmonary disease. These effects are associated with the duration and magnitude of exposure and are exacerbated by tobacco smoke. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.
Resumo:
OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex (R) was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p=0.98). The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn.s.cm(-5), respectively (p=0.035). The mean pulmonary compliance was 46.8 cm H2O in Group 1 and 49.3 ml/cm H2O in Group 2 (p=0.816). The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87). The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p=1.0), and the apoptotic cell counts were 118.75/mm(2) and 137.50/mm(2), respectively (p=0.71). CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex (R). The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.
Resumo:
Background Duchenne muscular dystrophy (DMD) is a sex-linked inherited muscle disease characterized by a progressive loss in muscle strength and respiratory muscle involvement. After 12 years of age, lung function declines at a rate of 6 % to 10.7 % per year in patients with DMD. Steroid therapy has been proposed to delay the loss of motor function and also the respiratory involvement. Method In 21 patients with DMD aged between seven and 16 years, the forced vital capacity (FVC) and the forced expiratory volume in one second (FEV1) were evaluated at three different times during a period of two years. Results We observed in this period of evaluation the maintenance of the FVC and the FEV1 in this group of patients independently of chronological age, age at onset of steroid therapy, and walking capacity. Conclusion The steroid therapy has the potential to stabilize or delay the loss of lung function in DMD patients even if they are non-ambulant or older than 10 years, and in those in whom the medication was started after 7 years of age.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.