881 resultados para low-heating-rate sintering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense SnO2 ceramics were obtained by doping with ZnO concentrations varies from 0.5 to 5.0 mel. The obtained powder was isostaticaly pressed to 210MPa in cylindrical shape and sintered from ambient to 1.500 degrees C using constant heating rate of 10 degrees C/min. Densities above 97% were obtained depending on the ZnO doping concentration. A maximum density was reached with the addition of 2 mol%. It can be concluded from shrinkage data and the observed microstructure obtained by SEM that the solid solution limit for ZnO in SnO2 is about 1.0 mol%. Above this concentration the formation of a second ceramic phase is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 degreesC. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses (tan delta) exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 degreesC. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z(omega) and M(omega). The plots of the relaxation times tau(Z'), and tau(M) as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbMg1/3Nb2/3O3 (PMN) powder was prepared by citrate organic solution, and barium titanate (BT) seed particles were added to encourage the perovskite phase formation. Sintering was followed using the constant heating rate mode of a dilatometer, and it was observed that the seed concentration affected the PMN shrinkage rate and crystal structure. The study of the lattice parameters of the samples after the sintering process indicates that the diffusion of the titanium and of the barium inside perovskite and pyrochlore PMN phases occurs. Moreover, this substitution provoked a decrease of the lattice parameters as showed by the Rietveld refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PMN powder samples with PbO excess of 0, 1,2 and 3% were submitted to the pressing and sintering at 1200°C for 4h with a heating rate of 3°C/min. A new sintering system, developed at our laboratories, was used. It allows obtaining more information on the sintering process. The sintered samples in the new system were compared to sintered samples in the C system. The microstructure, dielectric properties and the effect of the PbO excess in different sintering systems were compared. The N system permitted to obtain a ceramic with better properties, such density, dielectric constant and very homogeneous microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation on the sinterization of Gd:CeO2 (Ce 0.85Gd0.15O1.9-δ ceramic system) 3-10 nm nanoparticles in pressed bodies was done. The heating rate was taken as a key parameter and two competing sinterization processes were identified, associated with different diffusional mechanisms. Using heating rates of 113 C min -1, a high-final density (98 % of the theoretical) was obtained by superposing the two aforementioned mechanisms, resulting in a homogeneous microstructure at lower temperatures. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As diversas aplicações tecnológicas de nanopartículas magnéticas (NPM) vêm intensificando o interesse por materiais com propriedades magnéticas diferenciadas, como magnetização de saturação (MS) intensificada e comportamento superparamagnético. Embora MNP metálicas de Fe, Co e bimetálicas de FeCo e FePt possuam altos valores de MS, sua baixa estabilidade química dificulta aplicações em escala nanométrica. Neste trabalho foram sintetizadas NPM de Fe, Co, FeCo e FePt com alta estabilidade química e rigoroso controle morfológico. NPM de óxido metálicos (Fe e Co) também foram obtidas. Dois métodos de síntese foram empregados. Usando método baseado em sistemas nanoheterogêneos (sistemas micelares ou de microemulsão inversa), foram sintetizadas NPM de Fe3O4 e Co metálico. Foram empregados surfactantes cátion-substituídos: dodecil sulfato de ferro(III) (FeDS) e dodecil sulfato de cobalto(II) (CoDS). Para a síntese das NPM, foram estudados e determinados a concentração micelar crítica do FeDS em 1-octanol (cmc = 0,90 mmol L-1) e o diagrama de fases pseudoternário para o sistema n-heptano/CoDS/n-butanol/H2O. NPM esferoidais de magnetita com3,4 nm de diâmetro e comportamento quase-paramagnético foram obtidas usando sistemas micelares de FeDS em 1-octanol. Já as NPM de Co obtidas via microemulsão inversa, apesar da larga distribuição de tamanho e baixa MS, são quimicamente estáveis e superparamagnéticas. O segundo método é baseado na decomposição térmica de complexos metálicos, pelo qual foram preparadas NPM esféricas de FePt e de óxidos metálicos (Fe3O4, FeXO1-X, (Co,Fe)XO1-X e CoFe2O4) com morfologia controlada e estabilidade química. O método não mostrou a mesma efetividade na síntese de NPM de FeAg e FeCo: a liga FeAg não foi obtida enquanto que NPM de FeCo com estabilidade química foram obtidas sem controle morfológico. NPM de Fe e FeCo foram preparadas a partir da redução térmica de NPM de Fe3O4 e CoFe2O4, as quais foram previamente recobertas com sílica. A sílica previne a sinterização inter-partículas, além de proporcionar caráter hidrofílico e biocompatibilidade ao material. As amostras reduzidas apresentaram aumento dos valores de MS (entre 21,3 e 163,9%), o qual é diretamente proporcional às dimensões das NPM. O recobrimento com sílica foi realizado via hidrólise de tetraetilortosilicato (TEOS) em sistema de microemulsão inversa. A espessura da camada de sílica foi controlada variando-se o tempo de reação e as concentrações de TEOS e de NPM, sendo então proposto um mecanismo do processo de recobrimento. Algumas amostras receberam um recobrimento adicional de TiO2 na fase anatase, para o qual foi empregado etilenoglicol como solvente e ligante para formação de glicolato de Ti como precursor. A espessura da camada de TiO2 (2-12 nm) é controlada variando as quantidades relativas entre NPM e o precursor de Ti. Ensaios de hipertermia magnética foram realizados para as amostras recobertas com sílica. Ensaios de hipertermia magnéticas mostram grande aumento da taxa de aquecimento das amostras após a redução térmica, mesmo para dispersões diluídas de NPM (0,6 a 4,5 mg mL-1). Taxas de aquecimento entre 0,3 e 3,0oC min-1 e SAR entre 37,2 e 96,3 W g-1. foram obtidos. A atividade fotocatalítica das amostras recobertas foram próximas à da fase anatase pura, com a vantagem de possuir um núcleo magnético que permite a recuperação do catalisador pela simples aplicação de campos magnéticos externos. Os resultados preliminares dos ensaios de hipertermia magnética e fotocatálise indicam um forte potencial dos materiais aqui relatados para aplicações em biomedicina e em fotocatálise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cu-Mo system is a composite used in the electrical industry as material for electrical contact and resistance welding electrode as well as the heat sink and microwave absorber in microelectronic devices. The use of this material in such applications is due to the excellent properties of thermal and electrical conductivity and the possibility of adjustment of its coefficient of thermal expansion to meet those of materials used as substrates in the semiconductor micoreletrônic industry. Powder metallurgy through the processes of milling, pressing shaping and sintering is a viable technique for consolidation of such material. However, the mutual insolubility of both phases and the low wettability of liquid Cu on Mo impede its densification. However, the mutual insolubility of both phases and the low wettability of liquid Cu on Mo impede its densification. The mechanical alloying is a technique for preparation of powders used to produce nanocrystalline composite powder with amorphous phase or extended solid solution, which increases the sinterability immiscible systems such as the Mo-Cu. This paper investigates the influence of ammonium heptamolybdate (HMA) and the mechanical alloying in the preparation of a composite powder HMA-20% Cu and the effect of this preparation on densification and structure of MoCu composite produced. HMA and Cu powders in the proportion of 20% by weight of Cu were prepared by the techniques of mechanical mixing and mechanical alloying in a planetary mill. These were milled for 50 hours. To observe the evolution of the characteristics of the particles, powder samples were taken after 2, 10, 15, 20, 30 and 40 hours of milling. Cylindrical samples 5 to 8 mm in diameter and 3 to 4 mm thickness were obtained by pressing at 200 MPa to the mixed powders so as to ground. These samples were sintered at 1200 ° C for 60 minutes under an atmosphere of H2. To determine the effect of heating rate on the structure of the material during the decomposition and reduction of HMA, rates of 2, 5 and 10 ° C / min were used .. The post and the structures of the sintered samples were characterized by SEM and EDS. The density of the green and sintered bodies was measured using the geometric method (weight / volume). Vickers microhardness with a load of 1 N for 15 s were performed on sintered structures. The density of the sintered structures 10 ° C / min. reached 99% of theoretical density, how the density of sintered structures to 2 ° C / min. reached only 90% of the theoretical density

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a mechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center-of-mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoher- ence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the timescale of seconds, and that the free parameter λcsl which characterises the model ought to be testable to values as low as 10^{−12} Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal powder sintering appears to be promising option to achieve new physical and mechanical properties combining raw material with new processing improvements. It interest over many years and continue to gain wide industrial application. Stainless steel is a widely accepted material because high corrosion resistance. However stainless steels have poor sinterability and poor wear resistance due to their low hardness. Metal matrix composite (MMC) combining soft metallic matrix reinforced with carbides or oxides has attracted considerable attention for researchers to improve density and hardness in the bulk material. This thesis focuses on processing 316L stainless steel by addition of 3% wt niobium carbide to control grain growth and improve densification and hardness. The starting powder were water atomized stainless steel manufactured for Höganäs (D 50 = 95.0 μm) and NbC produced in the UFRN and supplied by Aesar Alpha Johnson Matthey Company with medium crystallite size 16.39 nm and 80.35 nm respectively. Samples with addition up to 3% of each NbC were mixed and mechanically milled by 3 routes. The route1 (R1) milled in planetary by 2 hours. The routes 2 (R2) and 3 (R3) milled in a conventional mill by 24 and 48 hours. Each milled samples and pure sample were cold compacted uniaxially in a cylindrical steel die (Ø 5 .0 mm) at 700 MPa, carried out in a vacuum furnace, heated at 1290°C, heating rate 20°C stand by 30 and 60 minutes. The samples containing NbC present higher densities and hardness than those without reinforcement. The results show that nanosized NbC particles precipitate on grain boundary. Thus, promote densification eliminating pores, control grain growth and increase the hardness values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.