826 resultados para longitudinal Poisson data
Resumo:
1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
Despite being used since 1976, Delusions-Symptoms-States-Inventory/states of Anxiety and Depression (DSSI/sAD) has not yet been validated for use among people with diabetes. The aim of this study was to examine the validity of the personal disturbance scale (DSSI/sAD) among women with diabetes using Mater-University of Queensland Study of Pregnancy (MUSP) cohort data. The DSSI subscales were compared against DSM-IV disorders, the Mental Component Score of the Short Form 36 (SF-36 MCS), and Center for Epidemiologic Studies Depression Scale (CES-D). Factor analyses, odds ratios, receiver operating characteristic (ROC) analyses and diagnostic efficiency tests were used to report findings. Exploratory factor analysis and fit indices confirmed the hypothesized two-factor model of DSSI/sAD. We found significant variations in the DSSI/sAD domain scores that could be explained by CES-D (DSSI-Anxiety: 55%, DSSI-Depression: 46%) and SF-36 MCS (DSSI-Anxiety: 66%, DSSI-Depression: 56%). The DSSI subscales predicted DSM-IV diagnosed depression and anxiety disorders. The ROC analyses show that although the DSSI symptoms and DSM-IV disorders were measured concurrently the estimates of concordance remained only moderate. The findings demonstrate that the DSSI/sAD items have similar relationships to one another in both the diabetes and non-diabetes data sets which therefore suggest that they have similar interpretations.
Resumo:
Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
In analysis of longitudinal data, the variance matrix of the parameter estimates is usually estimated by the 'sandwich' method, in which the variance for each subject is estimated by its residual products. We propose smooth bootstrap methods by perturbing the estimating functions to obtain 'bootstrapped' realizations of the parameter estimates for statistical inference. Our extensive simulation studies indicate that the variance estimators by our proposed methods can not only correct the bias of the sandwich estimator but also improve the confidence interval coverage. We applied the proposed method to a data set from a clinical trial of antibiotics for leprosy.
Resumo:
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.
Resumo:
Robust methods are useful in making reliable statistical inferences when there are small deviations from the model assumptions. The widely used method of the generalized estimating equations can be "robustified" by replacing the standardized residuals with the M-residuals. If the Pearson residuals are assumed to be unbiased from zero, parameter estimators from the robust approach are asymptotically biased when error distributions are not symmetric. We propose a distribution-free method for correcting this bias. Our extensive numerical studies show that the proposed method can reduce the bias substantially. Examples are given for illustration.
Resumo:
The approach of generalized estimating equations (GEE) is based on the framework of generalized linear models but allows for specification of a working matrix for modeling within-subject correlations. The variance is often assumed to be a known function of the mean. This article investigates the impacts of misspecifying the variance function on estimators of the mean parameters for quantitative responses. Our numerical studies indicate that (1) correct specification of the variance function can improve the estimation efficiency even if the correlation structure is misspecified; (2) misspecification of the variance function impacts much more on estimators for within-cluster covariates than for cluster-level covariates; and (3) if the variance function is misspecified, correct choice of the correlation structure may not necessarily improve estimation efficiency. We illustrate impacts of different variance functions using a real data set from cow growth.