951 resultados para load balancing algorithm
Resumo:
Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.
Resumo:
High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.
Resumo:
To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.
Resumo:
Network virtualisation is seen as a promising approach to overcome the so-called “Internet impasse” and bring innovation back into the Internet, by allowing easier migration towards novel networking approaches as well as the coexistence of complementary network architectures on a shared infrastructure in a commercial context. Recently, the interest from the operators and mainstream industry in network virtualisation has grown quite significantly, as the potential benefits of virtualisation became clearer, both from an economical and an operational point of view. In the beginning, the concept has been mainly a research topic and has been materialized in small-scale testbeds and research network environments. This PhD Thesis aims to provide the network operator with a set of mechanisms and algorithms capable of managing and controlling virtual networks. To this end, we propose a framework that aims to allocate, monitor and control virtual resources in a centralized and efficient manner. In order to analyse the performance of the framework, we performed the implementation and evaluation on a small-scale testbed. To enable the operator to make an efficient allocation, in real-time, and on-demand, of virtual networks onto the substrate network, it is proposed a heuristic algorithm to perform the virtual network mapping. For the network operator to obtain the highest profit of the physical network, it is also proposed a mathematical formulation that aims to maximize the number of allocated virtual networks onto the physical network. Since the power consumption of the physical network is very significant in the operating costs, it is important to make the allocation of virtual networks in fewer physical resources and onto physical resources already active. To address this challenge, we propose a mathematical formulation that aims to minimize the energy consumption of the physical network without affecting the efficiency of the allocation of virtual networks. To minimize fragmentation of the physical network while increasing the revenue of the operator, it is extended the initial formulation to contemplate the re-optimization of previously mapped virtual networks, so that the operator has a better use of its physical infrastructure. It is also necessary to address the migration of virtual networks, either for reasons of load balancing or for reasons of imminent failure of physical resources, without affecting the proper functioning of the virtual network. To this end, we propose a method based on cloning techniques to perform the migration of virtual networks across the physical infrastructure, transparently, and without affecting the virtual network. In order to assess the resilience of virtual networks to physical network failures, while obtaining the optimal solution for the migration of virtual networks in case of imminent failure of physical resources, the mathematical formulation is extended to minimize the number of nodes migrated and the relocation of virtual links. In comparison with our optimization proposals, we found out that existing heuristics for mapping virtual networks have a poor performance. We also found that it is possible to minimize the energy consumption without penalizing the efficient allocation. By applying the re-optimization on the virtual networks, it has been shown that it is possible to obtain more free resources as well as having the physical resources better balanced. Finally, it was shown that virtual networks are quite resilient to failures on the physical network.
Resumo:
We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.
Resumo:
We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
Processor virtualization for process migration in distributed parallel computing systems has formed a significant component of research on load balancing. In contrast, the potential of processor virtualization for fault tolerance has been addressed minimally. The work reported in this paper is motivated towards extending concepts of processor virtualization towards ‘intelligent cores’ as a means to achieve fault tolerance in distributed parallel computing systems. Intelligent cores are an abstraction of the hardware processing cores, with the incorporation of cognitive capabilities, on which parallel tasks can be executed and migrated. When a processing core executing a task is predicted to fail the task being executed is proactively transferred onto another core. A parallel reduction algorithm incorporating concepts of intelligent cores is implemented on a computer cluster using Adaptive MPI and Charm ++. Preliminary results confirm the feasibility of the approach.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
Network reconfiguration in distribution systems can be carried out by changing the status of sectionalizing switches and it is usually done for loss minimization and load balancing. In this paper it is presented an heuristic algorithm that accomplishes network reconfiguration for operation planning in order to obtain a configuration set whose configurations have the smallest active losses on its feeders. To obtain the configurations, it is used an approached radial load flow method and an heuristic proceeding based on maximum limit of voltage drop on feeders. Results are presented for three hypothetical systems largely known whose data are available in literature and a real system with 135 busses. In addition, it is used a fast and robust load flow which decreases the computational effort.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.