913 resultados para linear time-invariant plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controllability grammian is important in many control applications. Given a set of closed-loop eigenvalues the corresponding controllability grammian can be obtained by computing the controller which assigns the eigenvalues and then by solving the Lyapunov equation that defines the grammian. The relationship between the controllability grammian, resulting from state feedback, and the closed-loop eigenvalues of a single input linear time invariant (LTI) system is obtained. The proposed methodology does not require the computation of the controller that assigns the specified eigenvalues. The closed-loop system matrix is obtained from the knowledge of the open-loop system matrix, control influence matrix and the specified closed-loop eigenvalues. Knowing the closed-loop system matrix, the grammian is then obtained from the solution of the Lyapunov equation that defines it. Finally the proposed idea is extended to find the state covariance matrix for a specified set of closed-loop eigenvalues (without computing the controller), due to impulsive input in the disturbance channel and to solve the eigenvalue assignment problem for the single input case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The separation of independent sources from mixed observed data is a fundamental and challenging problem. In many practical situations, observations may be modelled as linear mixtures of a number of source signals, i.e. a linear multi-input multi-output system. A typical example is speech recordings made in an acoustic environment in the presence of background noise and/or competing speakers. Other examples include EEG signals, passive sonar applications and cross-talk in data communications. In this paper, we propose iterative algorithms to solve the n × n linear time invariant system under two different constraints. Some existing solutions for 2 × 2 systems are reviewed and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is given for solving an optimal H2 approximation problem for SISO linear time-invariant stable systems. The method, based on constructive algebra, guarantees that the global optimum is found; it does not involve any gradient-based search, and hence avoids the usual problems of local minima. We examine mostly the case when the model order is reduced by one, and when the original system has distinct poles. This case exhibits special structure which allows us to provide a complete solution. The problem is converted into linear algebra by exhibiting a finite-dimensional basis for a certain space, and can then be solved by eigenvalue calculations, following the methods developed by Stetter and Moeller. The use of Buchberger's algorithm is avoided by writing the first-order optimality conditions in a special form, from which a Groebner basis is immediately available. Compared with our previous work the method presented here has much smaller time and memory requirements, and can therefore be applied to systems of significantly higher McMillan degree. In addition, some hypotheses which were required in the previous work have been removed. Some examples are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report presents a method for designing a constrained output-feedback model predictive controller (MPC) that behaves in the same way as an existing baseline stabilising linear time invariant output-feedback controller when constraints are inactive. The baseline controller is cast into an observer-compensator form and an inverse-optimal cost function is used as the basis of the MPC controller. The available degrees of design freedom are explored, and some guidelines provided for the selection of an appropriate observer-compensator realisation that will best allow exploitation of the constraint-handling and redundancy management capabilities of MPC. Consideration is given to output setpoint tracking, and the method is demonstrated with three different multivariable plants of varying complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a spectral density matrix or, equivalently, a real autocovariance sequence, the author seeks to determine a finite-dimensional linear time-invariant system which, when driven by white noise, will produce an output whose spectral density is approximately PHI ( omega ), and an approximate spectral factor of PHI ( omega ). The author employs the Anderson-Faurre theory in his analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An approach to designing a constrained output-feedback predictive controller that has the same small-signal properties as a pre-existing output-feedback linear time invariant controller is proposed. Systematic guidelines are proposed to select an appropriate (non-unique) realization of the resulting state observer. A method is proposed to transform a class of offset-free reference tracking controllers into the combination of an observer, steady-state target calculator and predictive controller. The procedure is demonstrated with a numerical example. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines necessary and sufficient conditions for network reconstruction of linear, time-invariant systems using data from either knock-out or over-expression experiments. These structural system perturbations, which are common in biological experiments, can be formulated as unknown system inputs, allowing the network topology and dynamics to be found. We assume that only partial state measurements are available and propose an algorithm that can reconstruct the network at the level of the measured states using either time-series or steady-state data. A simulated example illustrates how the algorithm successfully reconstructs a network from data. © 2013 EUCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sistemas compartimentais são frequentemente usados na modelação de diversos processos em várias áreas, tais como a biomedicina, ecologia, farmacocinética, entre outras. Na maioria das aplicações práticas, nomeadamente, aquelas que dizem respeito à administração de drogas a pacientes sujeitos a cirurgia, por exemplo, a presença de incertezas nos parâmetros do sistema ou no estado do sistema é muito comum. Ao longo dos últimos anos, a análise de sistemas compartimentais tem sido bastante desenvolvida na literatura. No entanto, a análise da sensibilidade da estabilidade destes sistemas na presença de incertezas tem recebido muito menos atenção. Nesta tese, consideramos uma lei de controlo por realimentação do estado com restrições de positividade e analisamos a sua robustez quando aplicada a sistemas compartimentais lineares e invariantes no tempo com incertezas nos parâmetros. Além disso, para sistemas lineares e invariantes no tempo com estado inicial desconhecido, combinamos esta lei de controlo com um observador do estado e a robustez da lei de controlo resultante também é analisada. O controlo do bloqueio neuromuscular por meio da infusão contínua de um relaxante muscular pode ser modelado como um sistema compartimental de três compartimentos e tem sido objecto de estudo por diversos grupos de investigação. Nesta tese, os nossos resultados são aplicados a este problema de controlo e são fornecidas estratégias para melhorar os resultados obtidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals