983 resultados para iospin dependent Boltzmann-Langevin equation
Resumo:
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Resumo:
Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Ito calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N -> infinity and t -> infinity(t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.
Resumo:
We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.
Resumo:
The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.
Resumo:
Contrary to the actual nonlinear Glauber model, the linear Glauber model (LGM) is exactly solvable, although the detailed balance condition is not generally satisfied. This motivates us to address the issue of writing the transition rate () in a best possible linear form such that the mean squared error in satisfying the detailed balance condition is least. The advantage of this work is that, by studying the LGM analytically, we will be able to anticipate how the kinetic properties of an arbitrary Ising system depend on the temperature and the coupling constants. The analytical expressions for the optimal values of the parameters involved in the linear are obtained using a simple Moore-Penrose pseudoinverse matrix. This approach is quite general, in principle applicable to any system and can reproduce the exact results for one dimensional Ising system. In the continuum limit, we get a linear time-dependent Ginzburg-Landau equation from the Glauber's microscopic model of non-conservative dynamics. We analyze the critical and dynamic properties of the model, and show that most of the important results obtained in different studies can be reproduced by our new mathematical approach. We will also show in this paper that the effect of magnetic field can easily be studied within our approach; in particular, we show that the inverse of relaxation time changes quadratically with (weak) magnetic field and that the fluctuation-dissipation theorem is valid for our model.
Resumo:
The kinetic theory of fluid turbulence modeling developed by Degond and Lemou in 7] is considered for further study, analysis and simulation. Starting with the Boltzmann like equation representation for turbulence modeling, a relaxation type collision term is introduced for isotropic turbulence. In order to describe some important turbulence phenomenology, the relaxation time incorporates a dependency on the turbulent microscopic energy and this makes difficult the construction of efficient numerical methods. To investigate this problem, we focus here on a multi-dimensional prototype model and first propose an appropriate change of frame that makes the numerical study simpler. Then, a numerical strategy to tackle the stiff relaxation source term is introduced in the spirit of Asymptotic Preserving Schemes. Numerical tests are performed in a one-dimensional framework on the basis of the developed strategy to confirm its efficiency.
Resumo:
The possibility of lifetime measurement in a flowing medium with phase fluorometry is investigated theoretically. A 3-D time dependent partial differential equation of the number density of atoms (or molecules) in the upper level of the fluorescence transition is solved analytically, taking flow, diffusion, optical excitation, decay, Doppler shift, and thickness of the excitation light sheet into account. An analytical expression of the intensity of the fluorescence signal in the flowing medium is deduced. Conditions are given, in which the principle of lifetime measurement with phase fluorometry in the static sample cell can be used in a flowing medium.
Resumo:
Large-eddy simulation (LES) has emerged as a promising tool for simulating turbulent flows in general and, in recent years,has also been applied to the particle-laden turbulence with some success (Kassinos et al., 2007). The motion of inertial particles is much more complicated than fluid elements, and therefore, LES of turbulent flow laden with inertial particles encounters new challenges. In the conventional LES, only large-scale eddies are explicitly resolved and the effects of unresolved, small or subgrid scale (SGS) eddies on the large-scale eddies are modeled. The SGS turbulent flow field is not available. The effects of SGS turbulent velocity field on particle motion have been studied by Wang and Squires (1996), Armenio et al. (1999), Yamamoto et al. (2001), Shotorban and Mashayek (2006a,b), Fede and Simonin (2006), Berrouk et al. (2007), Bini and Jones (2008), and Pozorski and Apte (2009), amongst others. One contemporary method to include the effects of SGS eddies on inertial particle motions is to introduce a stochastic differential equation (SDE), that is, a Langevin stochastic equation to model the SGS fluid velocity seen by inertial particles (Fede et al., 2006; Shotorban and Mashayek, 2006a; Shotorban and Mashayek, 2006b; Berrouk et al., 2007; Bini and Jones, 2008; Pozorski and Apte, 2009).However, the accuracy of such a Langevin equation model depends primarily on the prescription of the SGS fluid velocity autocorrelation time seen by an inertial particle or the inertial particle–SGS eddy interaction timescale (denoted by $\delt T_{Lp}$ and a second model constant in the diffusion term which controls the intensity of the random force received by an inertial particle (denoted by C_0, see Eq. (7)). From the theoretical point of view, dTLp differs significantly from the Lagrangian fluid velocity correlation time (Reeks, 1977; Wang and Stock, 1993), and this carries the essential nonlinearity in the statistical modeling of particle motion. dTLp and C0 may depend on the filter width and particle Stokes number even for a given turbulent flow. In previous studies, dTLp is modeled either by the fluid SGS Lagrangian timescale (Fede et al., 2006; Shotorban and Mashayek, 2006b; Pozorski and Apte, 2009; Bini and Jones, 2008) or by a simple extension of the timescale obtained from the full flow field (Berrouk et al., 2007). In this work, we shall study the subtle and on-monotonic dependence of $\delt T_{Lp}$ on the filter width and particle Stokes number using a flow field obtained from Direct Numerical Simulation (DNS). We then propose an empirical closure model for $\delta T_{Lp}$. Finally, the model is validated against LES of particle-laden turbulence in predicting single-particle statistics such as particle kinetic energy. As a first step, we consider the particle motion under the one-way coupling assumption in isotropic turbulent flow and neglect the gravitational settling effect. The one-way coupling assumption is only valid for low particle mass loading.
Resumo:
利用强激光场电离和离解分子来研究分子激发态的波包结构是强场物理的重要研究方向。利用短时指数传播子对称分割法和快速傅里叶变换技术。数值求解了一维含时Schr(oe)dinger方程,探讨了双色激光场中激光的基波和谐波强度之间的不同配比以及脉宽对线性多原子分子离子电离的影响。理论计算结果表明:基波和谐波的相对相位为π时,尽管随着激光的基波和谐波强度之间配比的变化,电离几率随原子间距变化的趋势基本保持不变,但在一定的激光基波强度下(1.2×10^13~1.2×10^15W/cm^2),激光基波强度的变化可以明显
Resumo:
This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.
Resumo:
[ES]El objetivo del presente TFG es el Análisis Dinámico de mecanismos paralelos según las necesidades de la mecatrónica. La mecatrónica requiere expresiones explícitas de las fuerzas motoras que sólo dependen de las propias posiciones, velocidades y aceleraciones en los accionamientos. Ello requiere métodos avanzados de la mecánica analítica de sólido rígido. Concretamente se han desarrollado la ecuación de Lagrange modificada (según [11]) y la ecuación de Boltzmann-Hamel modificada, siendo esta última una aportación de este TFG. Como aplicación práctica se ha programado un modelo mecatrónico para un manipulador paralelo 5R y se ha optimizado el diseño de una Multi Axis Simulation Table 3PRS.
Resumo:
Os processos estocásticos com ruído branco multiplicativo são objeto de atenção constante em uma grande área da pesquisa científica. A variedade de prescrições possíveis para definir matematicamente estes processos oferece um obstáculo ao desenvolvimento de ferramentas gerais para seu tratamento. Na presente tese, estudamos propriedades de equilíbrio de processos markovianos com ruído branco multiplicativo. Para conseguirmos isto, definimos uma transformação de reversão temporal de tais processos levando em conta que a distribuição estacionária de probabilidade depende da prescrição. Deduzimos um formalismo funcional visando obter o funcional gerador das funções de correlação e resposta de um processo estocástico multiplicativo representado por uma equação de Langevin. Ao representar o processo estocástico neste formalismo (de Grassmann) funcional eludimos a necessidade de fixar uma prescrição particular. Neste contexto, analisamos as propriedades de equilíbrio e estudamos as simetrias ocultas do processo. Mostramos que, usando uma definição apropriada da distribuição de equilíbrio e considerando a transformação de reversão temporal adequada, as propriedades usuais de equilíbrio são satisfeitas para qualquer prescrição. Finalmente, apresentamos uma dedução detalhada da formulação supersimétrica covariante de um processo markoviano com ruído branco multiplicativo e estudamos algumas das relações impostas pelas funções de correlação através das identidades de Ward-Takahashi.
Resumo:
É conhecido que derivações microscópicas obtidas através de métodos de teoria quântica de campos (TQC) podem conduzir a complicadas equações de movimento (EdM) que possuem um termo dissipativo com memória e um termo de ruído colorido. Um caso particularmente interessante é o modelo que escreve a interação entre um sistema e um banho térmico a temperatura T. Motivado por isso, usamos uma prescrição que nos permite reescrever EdMs não-markovianas semelhantes as obtidas em TQC em termos de um sistema de equações locais, para então confrontarmos a solução desse sistema com a solução aproximada usada correntemente na literatura, a chamada aproximação markoviana. A pergunta chave a qual se pretende responder aqui é: dado um conjunto de parâmetros que descrevem o modelo, a aproximação markoviana é suficientemente boa para descrever a dinâmica do sistema se comparada a dinâmica obtida atravéS da EdM não-markoviana? Além disso, consideramos uma versão linear da ELG de forma que pudéssemos determinar o nível de confiança da nossa metodologia numérica, procedimento este realizado comparando-se a solução analítica com a solução numérica. Como exemplo de aplicação prática do tema discutido aqui, comparamos a evolução não-markoviana do inflaton com a evolução markoviana do mesmo num modelo de universo primordial denominado inflação não-isentrópica (warm inflation).
Resumo:
Turbomáquinas são máquinas operacionais que transferem energia mecânica entre um rotor e um fluido. Estas máquinas têm muitas aplicações industriais. Um dos componentes de uma turbomáquina responsável pela transferência da energia, ou receber a rotação do eixo e transformar em energia de fluido em caso de bomba ou transferir a energia do fluido para o eixo em caso de uma turbina, é o impelidor ou rotor. O fenómeno da cavitação envolve escoamento bifásico: o líquido a ser bombeado e as bolhas de vapor que são formadas durante o processo de bombeamento. O processo de formação dessas bolhas é complexo, mas ocorre principalmente devido a presença de regiões de pressões muito baixas. O colapso dessas bolhas pode muitas vezes levar a deterioração do material, dependendo da intensidade ou da velocidade de colapso das bolhas. O principal objetivo deste trabalho foi estudar o comportamento hidrodinâmico do escoamento nos canais do impelidor de uma turbomáquina do tipo radial usando recursos de fluidodinâmica computacional (CFD). Uma abordagem Euler-Lagrange acoplada com o modelo da equação de Langevin foi empregada para estimar a trajetória das bolhas. Resultados das simulações mostram as particularidades de um escoamento líquido-bolha de vapor passando em um canal de geometria curva, fornecendo assim informações que podem nos ajudar na prevenção da cavitação nessas máquinas.
Resumo:
A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.