870 resultados para interbody fusion
Resumo:
Statistical dependence between classifier decisions is often shown to improve performance over statistically independent decisions. Though the solution for favourable dependence between two classifier decisions has been derived, the theoretical analysis for the general case of 'n' client and impostor decision fusion has not been presented before. This paper presents the expressions developed for favourable dependence of multi-instance and multi-sample fusion schemes that employ 'AND' and 'OR' rules. The expressions are experimentally evaluated by considering the proposed architecture for text-dependent speaker verification using HMM based digit dependent speaker models. The improvement in fusion performance is found to be higher when digit combinations with favourable client and impostor decisions are used for speaker verification. The total error rate of 20% for fusion of independent decisions is reduced to 2.1% for fusion of decisions that are favourable for both client and impostors. The expressions developed here are also applicable to other biometric modalities, such as finger prints and handwriting samples, for reliable identity verification.
Resumo:
Several track-before-detection approaches for image based aircraft detection have recently been examined in an important automated aircraft collision detection application. A particularly popular approach is a two stage processing paradigm which involves: a morphological spatial filter stage (which aims to emphasize the visual characteristics of targets) followed by a temporal or track filter stage (which aims to emphasize the temporal characteristics of targets). In this paper, we proposed new spot detection techniques for this two stage processing paradigm that fuse together raw and morphological images or fuse together various different morphological images (we call these approaches morphological reinforcement). On the basis of flight test data, the proposed morphological reinforcement operations are shown to offer superior signal to-noise characteristics when compared to standard spatial filter options (such as the close-minus-open and adaptive contour morphological operations). However, system operation characterised curves, which examine detection verses false alarm characteristics after both processing stages, illustrate that system performance is very data dependent.
Resumo:
Study Design. Analysis of a case series of 24 Lenke 1C adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior scoliosis correction. Objective. To report the behaviour of the compensatory lumbar curve in a group of Lenke IC AIS patients following thoracoscopic anterior scoliosis correction, and to compare the results of this study with previously published data. Summary of Background Data. Several prior studies have reported spontaneous lumbar curve correction for both anterior and posterior selective fusion in Lenke 1C/King-Moe II patients; however to our knowledge no previous studies have reported outcomes of thoracoscopic anterior correction for this curve type. Methods. All AIS patients with a curve classification of Lenke 1C and a minimum of 24 months follow-up were retrieved from a consecutive series of 190 AIS patients who underwent thoracoscopic anterior instrumented fusion. Cobb angles of the major curve, instrumented levels, compensatory lumbar curve, and T5-T12 kyphosis were recorded, as well as coronal spinal balance, T1 tilt angle and shoulder balance. All radiographic parameters were measured before surgery and at 2, 6, 12 and 24 months after surgery. Results. Twenty-four female patients with right thoracic curves had a mean thoracic Cobb angle of 53.0° before surgery, decreasing to 24.9° two years after surgery. The mean lumbar compensatory Cobb angle was 43.5° before surgery, spontaneously correcting to 25.4° two years after surgery, indicating balance between the thoracic and lumbar scoliotic curves. The lumbar correction achieved (41.8%) compares favourably to previous studies. Conclusions. Selective thoracoscopic anterior fusion allows spontaneous lumbar curve correction and achieves coronal balance of main thoracic and compensatory lumbar curves, good cosmesis and patient satisfaction. Correction and balance are maintained 24 months after surgery.
Resumo:
Corals inhabit high energy environments where frequent disturbances result in physical damage to coralla, including fragmentation, as well as generating and mobilizing large sediment clasts. The branching growth form common in the Acropora genus makes it particularly susceptible to such disturbances and therefore useful for study of the fate of large sediment clasts. Living Acropora samples with natural, extraneous, broken coral branches incorporated on their living surface and dead Acropora skeletons containing embedded clasts of isolated branch sections of Acropora were observed and/or collected from the reef flat of Heron Reef, southern Great Barrier Reef and Bargara, Australia respectively. Here we report three different outcomes when pebble-sized coral branches became lodged on living coral colonies during sedimentation events in natural settings in Acropora: 1) Where live coral branches produced during a disturbance event come to rest on probable genetic clone-mate colonies they become rapidly stabilised leading to complete soft tissue and skeletal fusion; 2) Where the branch and underlying colony are not clone-mates, but may still be the same or similar species, the branches still may be stabilised rapidly by soft tissue, but then one species will overgrow the other; and 3) Where branches represent dead skeletal debris, they are treated like any foreign clast and are surrounded by clypeotheca and incorporated into the corallum by overgrowth. The retention of branch fragments on colonies in high energy reef flat settings may suggest an active role of coral polyps to recognise and fuse with each other. Also, in all cases the healing of disturbed tissue and subsequent skeletal growth is an adaptation important for protecting colonies from invasion by parasites and other benthos following disturbance events and may also serve to increase corallum strength. Knowledge of such adaptations is important in studies of coral behaviour during periods of environmental stress.
Resumo:
Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.
Resumo:
A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fastmoving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment due to the use of non-deterministic readily-available hardware (such as 802.11-based wireless) and inaccurate clock synchronisation protocols (such as Network Time Protocol (NTP)). As a result, the synchronisation of the clocks between robots can be out by tens-to-hundreds of milliseconds making correlation of data difficult and preventing the possibility of the units performing synchronised actions such as triggering cameras or intricate swarm manoeuvres. In this thesis, a complete data fusion unit is designed, implemented and tested. The unit, named BabelFuse, is able to accept sensor data from a number of low-speed communication buses (such as RS232, RS485 and CAN Bus) and also timestamp events that occur on General Purpose Input/Output (GPIO) pins referencing a submillisecondaccurate wirelessly-distributed "global" clock signal. In addition to its timestamping capabilities, it can also be used to trigger an attached camera at a predefined start time and frame rate. This functionality enables the creation of a wirelessly-synchronised distributed image acquisition system over a large geographic area; a real world application for this functionality is the creation of a platform to facilitate wirelessly-distributed 3D stereoscopic vision. A ‘best-practice’ design methodology is adopted within the project to ensure the final system operates according to its requirements. Initially, requirements are generated from which a high-level architecture is distilled. This architecture is then converted into a hardware specification and low-level design, which is then manufactured. The manufactured hardware is then verified to ensure it operates as designed and firmware and Linux Operating System (OS) drivers are written to provide the features and connectivity required of the system. Finally, integration testing is performed to ensure the unit functions as per its requirements. The BabelFuse System comprises of a single Grand Master unit which is responsible for maintaining the absolute value of the "global" clock. Slave nodes then determine their local clock o.set from that of the Grand Master via synchronisation events which occur multiple times per-second. The mechanism used for synchronising the clocks between the boards wirelessly makes use of specific hardware and a firmware protocol based on elements of the IEEE-1588 Precision Time Protocol (PTP). With the key requirement of the system being submillisecond-accurate clock synchronisation (as a basis for timestamping and camera triggering), automated testing is carried out to monitor the o.sets between each Slave and the Grand Master over time. A common strobe pulse is also sent to each unit for timestamping; the correlation between the timestamps of the di.erent units is used to validate the clock o.set results. Analysis of the automated test results show that the BabelFuse units are almost threemagnitudes more accurate than their requirement; clocks of the Slave and Grand Master units do not di.er by more than three microseconds over a running time of six hours and the mean clock o.set of Slaves to the Grand Master is less-than one microsecond. The common strobe pulse used to verify the clock o.set data yields a positive result with a maximum variation between units of less-than two microseconds and a mean value of less-than one microsecond. The camera triggering functionality is verified by connecting the trigger pulse output of each board to a four-channel digital oscilloscope and setting each unit to output a 100Hz periodic pulse with a common start time. The resulting waveform shows a maximum variation between the rising-edges of the pulses of approximately 39¥ìs, well below its target of 1ms.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
Mobile devices and smartphones have become a significant communication channel for everyday life. The sensing capabilities of mobile devices are expanding rapidly, and sensors embedded in these devices are cheaper and more powerful than before. It is evident that mobile devices have become the most suitable candidates to sense contextual information without needing extra tools. However, current research shows only a limited number of sensors are being explored and investigated. As a result, it still needs to be clarified what forms of contextual information extracted from mo- bile sensors are useful. Therefore, this research investigates the context sensing using current mobile sensors, the study follows experimental methods and sensor data is evaluated and synthesised, in order to deduce the value of various sensors and combinations of sensor for the use in context-aware mobile applications. This study aims to develop a context fusion framework that will enhance the context-awareness on mobile applications, as well as exploring innovative techniques for context sensing on smartphone devices.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
Resumo:
Reliability of the performance of biometric identity verification systems remains a significant challenge. Individual biometric samples of the same person (identity class) are not identical at each presentation and performance degradation arises from intra-class variability and inter-class similarity. These limitations lead to false accepts and false rejects that are dependent. It is therefore difficult to reduce the rate of one type of error without increasing the other. The focus of this dissertation is to investigate a method based on classifier fusion techniques to better control the trade-off between the verification errors using text-dependent speaker verification as the test platform. A sequential classifier fusion architecture that integrates multi-instance and multisample fusion schemes is proposed. This fusion method enables a controlled trade-off between false alarms and false rejects. For statistically independent classifier decisions, analytical expressions for each type of verification error are derived using base classifier performances. As this assumption may not be always valid, these expressions are modified to incorporate the correlation between statistically dependent decisions from clients and impostors. The architecture is empirically evaluated by applying the proposed architecture for text dependent speaker verification using the Hidden Markov Model based digit dependent speaker models in each stage with multiple attempts for each digit utterance. The trade-off between the verification errors is controlled using the parameters, number of decision stages (instances) and the number of attempts at each decision stage (samples), fine-tuned on evaluation/tune set. The statistical validation of the derived expressions for error estimates is evaluated on test data. The performance of the sequential method is further demonstrated to depend on the order of the combination of digits (instances) and the nature of repetitive attempts (samples). The false rejection and false acceptance rates for proposed fusion are estimated using the base classifier performances, the variance in correlation between classifier decisions and the sequence of classifiers with favourable dependence selected using the 'Sequential Error Ratio' criteria. The error rates are better estimated by incorporating user-dependent (such as speaker-dependent thresholds and speaker-specific digit combinations) and class-dependent (such as clientimpostor dependent favourable combinations and class-error based threshold estimation) information. The proposed architecture is desirable in most of the speaker verification applications such as remote authentication, telephone and internet shopping applications. The tuning of parameters - the number of instances and samples - serve both the security and user convenience requirements of speaker-specific verification. The architecture investigated here is applicable to verification using other biometric modalities such as handwriting, fingerprints and key strokes.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.