877 resultados para indecomposable Banach spaces


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research partially supported by a grant of Caja de Ahorros del Mediterraneo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗ The present article was originally submitted for the second volume of Murcia Seminar on Functional Analysis (1989). Unfortunately it has been not possible to continue with Murcia Seminar publication anymore. For historical reasons the present vesion correspond with the original one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35G20, 47H30

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B50, 46B70, 46G12.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 46B20.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tools known as maximal functions are frequently used in harmonic analysis when studying local behaviour of functions. Typically they measure the suprema of local averages of non-negative functions. It is essential that the size (more precisely, the L^p-norm) of the maximal function is comparable to the size of the original function. When dealing with families of operators between Banach spaces we are often forced to replace the uniform bound with the larger R-bound. Hence such a replacement is also needed in the maximal function for functions taking values in spaces of operators. More specifically, the suprema of norms of local averages (i.e. their uniform bound in the operator norm) has to be replaced by their R-bound. This procedure gives us the Rademacher maximal function, which was introduced by Hytönen, McIntosh and Portal in order to prove a certain vector-valued Carleson's embedding theorem. They noticed that the sizes of an operator-valued function and its Rademacher maximal function are comparable for many common range spaces, but not for all. Certain requirements on the type and cotype of the spaces involved are necessary for this comparability, henceforth referred to as the “RMF-property”. It was shown, that other objects and parameters appearing in the definition, such as the domain of functions and the exponent p of the norm, make no difference to this. After a short introduction to randomized norms and geometry in Banach spaces we study the Rademacher maximal function on Euclidean spaces. The requirements on the type and cotype are considered, providing examples of spaces without RMF. L^p-spaces are shown to have RMF not only for p greater or equal to 2 (when it is trivial) but also for 1 < p < 2. A dyadic version of Carleson's embedding theorem is proven for scalar- and operator-valued functions. As the analysis with dyadic cubes can be generalized to filtrations on sigma-finite measure spaces, we consider the Rademacher maximal function in this case as well. It turns out that the RMF-property is independent of the filtration and the underlying measure space and that it is enough to consider very simple ones known as Haar filtrations. Scalar- and operator-valued analogues of Carleson's embedding theorem are also provided. With the RMF-property proven independent of the underlying measure space, we can use probabilistic notions and formulate it for martingales. Following a similar result for UMD-spaces, a weak type inequality is shown to be (necessary and) sufficient for the RMF-property. The RMF-property is also studied using concave functions giving yet another proof of its independence from various parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Birkhoff-James orthogonality is a generalization of Hilbert space orthogonality to Banach spaces. We investigate this notion of orthogonality when the Banach space has more structures. We start by doing so for the Banach space of square matrices moving gradually to all bounded operators on any Hilbert space, then to an arbitrary C*-algebra and finally a Hilbert C*-module.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is devoted to investigate the fixed points and best proximity points of multivalued cyclic self-mappings on a set of subsets of complete metric spaces endowed with a partial order under a generalized contractive condition involving a Hausdorff distance. The existence and uniqueness of fixed points of both the cyclic self-mapping and its associate composite self-mappings on each of the subsets are investigated, if the subsets in the cyclic disposal are nonempty, bounded and of nonempty convex intersection. The obtained results are extended to the existence of unique best proximity points in uniformly convex Banach spaces.