951 resultados para identification robust estimation methods
Resumo:
In this work we propose a new automatic methodology for computing accurate digital elevation models (DEMs) in urban environments from low baseline stereo pairs that shall be available in the future from a new kind of earth observation satellite. This setting makes both views of the scene similarly, thus avoiding occlusions and illumination changes, which are the main disadvantages of the commonly accepted large-baseline configuration. There still remain two crucial technological challenges: (i) precisely estimating DEMs with strong discontinuities and (ii) providing a statistically proven result, automatically. The first one is solved here by a piecewise affine representation that is well adapted to man-made landscapes, whereas the application of computational Gestalt theory introduces reliability and automation. In fact this theory allows us to reduce the number of parameters to be adjusted, and tocontrol the number of false detections. This leads to the selection of a suitable segmentation into affine regions (whenever possible) by a novel and completely automatic perceptual grouping method. It also allows us to discriminate e.g. vegetation-dominated regions, where such an affine model does not apply anda more classical correlation technique should be preferred. In addition we propose here an extension of the classical ”quantized” Gestalt theory to continuous measurements, thus combining its reliability with the precision of variational robust estimation and fine interpolation methods that are necessary in the low baseline case. Such an extension is very general and will be useful for many other applications as well.
Resumo:
We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.
Resumo:
In the past 20 years the theory of robust estimation has become an important topic of mathematical statistics. We discuss here some basic concepts of this theory with the help of simple examples. Furthermore we describe a subroutine library for the application of robust statistical procedures, which was developed with the support of the Swiss National Science Foundation.
Resumo:
Although extensive research has been conducted on urban freeway capacity estimation methods, minimal research has been carried out for rural highway sections, especially sections within work zones. This study attempted to fill that void for rural highways in Kansas, by estimating capacity of rural highway work zones in Kansas. Six work zone locations were selected for data collection and further analysis. An average of six days’ worth of field data was collected, from mid-October 2013 to late November 2013, at each of these work zone sites. Two capacity estimation methods were utilized, including the Maximum Observed 15-minute Flow Rate Method and the Platooning Method divided into 15-minute intervals. The Maximum Observed 15-minute Flow Rate Method provided an average capacity of 1469 passenger cars per hour per lane (pcphpl) with a standard deviation of 141 pcphpl, while the Platooning Method provided a maximum average capacity of 1195 pcphpl and a standard deviation of 28 pcphpl. Based on observed data and analysis carried out in this study, the suggested maximum capacity can be considered as 1500 pcphpl when designing work zones for rural highways in Kansas. This proposed standard value of rural highway work zone capacity could be utilized by engineers and planners so that they can effectively mitigate congestion at or near work zones that would have otherwise occurred due to construction/maintenance.
Resumo:
BACKGROUND: Excessive drinking is a major problem in Western countries. AUDIT (Alcohol Use Disorders Identification Test) is a 10-item questionnaire developed as a transcultural screening tool to detect excessive alcohol consumption and dependence in primary health care settings. OBJECTIVES: The aim of the study is to validate a French version of the Alcohol Use Disorders Identification Test (AUDIT). METHODS: We conducted a validation cross-sectional study in three French-speaking areas (Paris, Geneva and Lausanne). We examined psychometric properties of AUDIT as its internal consistency, and its capacity to correctly diagnose alcohol abuse or dependence as defined by DSM-IV and to detect hazardous drinking (defined as alcohol intake >30 g pure ethanol per day for men and >20 g of pure ethanol per day for women). We calculated sensitivity, specificity, positive and negative predictive values and Receiver Operator Characteristic curves. Finally, we compared the ability of AUDIT to accurately detect "alcohol abuse/dependence" with that of CAGE and MAST. RESULTS: 1207 patients presenting to outpatient clinics (Switzerland, n = 580) or general practitioners' (France, n = 627) successively completed CAGE, MAST and AUDIT self-administered questionnaires, and were independently interviewed by a trained addiction specialist. AUDIT showed a good capacity to discriminate dependent patients (with AUDIT > or =13 for males, sensitivity 70.1%, specificity 95.2%, PPV 85.7%, NPV 94.7% and for females sensitivity 94.7%, specificity 98.2%, PPV 100%, NPV 99.8%); and hazardous drinkers (with AUDIT > or =7, for males sensitivity 83.5%, specificity 79.9%, PPV 55.0%, NPV 82.7% and with AUDIT > or =6 for females, sensitivity 81.2%, specificity 93.7%, PPV 64.0%, NPV 72.0%). AUDIT gives better results than MAST and CAGE for detecting "Alcohol abuse/dependence" as showed on the comparative ROC curves. CONCLUSIONS: The AUDIT questionnaire remains a good screening instrument for French-speaking primary care.
Resumo:
This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.
Resumo:
Software engineering is criticized as not being engineering or 'well-developed' science at all. Software engineers seem not to know exactly how long their projects will last, what they will cost, and will the software work properly after release. Measurements have to be taken in software projects to improve this situation. It is of limited use to only collect metrics afterwards. The values of the relevant metrics have to be predicted, too. The predictions (i.e. estimates) form the basis for proper project management. One of the most painful problems in software projects is effort estimation. It has a clear and central effect on other project attributes like cost and schedule, and to product attributes like size and quality. Effort estimation can be used for several purposes. In this thesis only the effort estimation in software projects for project management purposes is discussed. There is a short introduction to the measurement issues, and some metrics relevantin estimation context are presented. Effort estimation methods are covered quite broadly. The main new contribution in this thesis is the new estimation model that has been created. It takes use of the basic concepts of Function Point Analysis, but avoids the problems and pitfalls found in the method. It is relativelyeasy to use and learn. Effort estimation accuracy has significantly improved after taking this model into use. A major innovation related to the new estimationmodel is the identified need for hierarchical software size measurement. The author of this thesis has developed a three level solution for the estimation model. All currently used size metrics are static in nature, but this new proposed metric is dynamic. It takes use of the increased understanding of the nature of the work as specification and design work proceeds. It thus 'grows up' along with software projects. The effort estimation model development is not possible without gathering and analyzing history data. However, there are many problems with data in software engineering. A major roadblock is the amount and quality of data available. This thesis shows some useful techniques that have been successful in gathering and analyzing the data needed. An estimation process is needed to ensure that methods are used in a proper way, estimates are stored, reported and analyzed properly, and they are used for project management activities. A higher mechanism called measurement framework is also introduced shortly. The purpose of the framework is to define and maintain a measurement or estimationprocess. Without a proper framework, the estimation capability of an organization declines. It requires effort even to maintain an achieved level of estimationaccuracy. Estimation results in several successive releases are analyzed. It isclearly seen that the new estimation model works and the estimation improvementactions have been successful. The calibration of the hierarchical model is a critical activity. An example is shown to shed more light on the calibration and the model itself. There are also remarks about the sensitivity of the model. Finally, an example of usage is shown.
Resumo:
Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila-the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families-to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia's gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.
Resumo:
Forensic Anthropology and Bioarchaeology studies depend critically on the accuracy and reliability of age-estimation techniques. In this study we have evaluated two age-estimation methods for adults based on the pubic symphysis (Suchey-Brooks) and the auricular surface (Buckberry-Chamberlain) in a current sample of 139 individuals (67 women and 72 men) from Madrid in order to verify the accuracy of both methods applied to a sample of innominate bones from the central Iberian Peninsula. Based on the overall results of this study, the Buckberry-Chamberlain method seems to be the method that provides better estimates in terms of accuracy (percentage of hits) and absolute difference to the chronological age taking into account the total sample. The percentage of hits and mean absolute difference of the Buckberry-Chamberlain and Suchey-Brooks methods are 97.3% and 11.24 years, and 85.7% and 14.38 years, respectively. However, this apparently greater applicability of the Buckberry-Chamberlain method is mainly due to the broad age ranges provided. Results indicated that Suchey-Brooks method is more appropriate for populations with a majority of young individuals, whereas Buckberry-Chamberlain method is recommended for populations with a higher percentage of individuals in the range 60-70 years. These different age estimation methodologies significantly influence the resulting demographic profile, consequently affecting the biological characteristics reconstruction of the samples in which they are applied.
Resumo:
In the current study, we evaluated various robust statistical methods for comparing two independent groups. Two scenarios for simulation were generated: one of equality and another of population mean differences. In each of the scenarios, 33 experimental conditions were used as a function of sample size, standard deviation and asymmetry. For each condition, 5000 replications per group were generated. The results obtained by this study show an adequate type error I rate but not a high power for the confidence intervals. In general, for the two scenarios studied (mean population differences and not mean population differences) in the different conditions analysed, the Mann-Whitney U-test demonstrated strong performance, and a little worse the t-test of Yuen-Welch.
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Activity of the medial frontal cortex (MFC) has been implicated in attention regulation and performance monitoring. The MFC is thought to generate several event-related potential (ERPs) components, known as medial frontal negativities (MFNs), that are elicited when a behavioural response becomes difficult to control (e.g., following an error or shifting from a frequently executed response). The functional significance of MFNs has traditionally been interpreted in the context of the paradigm used to elicit a specific response, such as errors. In a series of studies, we consider the functional similarity of multiple MFC brain responses by designing novel performance monitoring tasks and exploiting advanced methods for electroencephalography (EEG) signal processing and robust estimation statistics for hypothesis testing. In study 1, we designed a response cueing task and used Independent Component Analysis (ICA) to show that the latent factors describing a MFN to stimuli that cued the potential need to inhibit a response on upcoming trials also accounted for medial frontal brain responses that occurred when individuals made a mistake or inhibited an incorrect response. It was also found that increases in theta occurred to each of these task events, and that the effects were evident at the group level and in single cases. In study 2, we replicated our method of classifying MFC activity to cues in our response task and showed again, using additional tasks, that error commission, response inhibition, and, to a lesser extent, the processing of performance feedback all elicited similar changes across MFNs and theta power. In the final study, we converted our response cueing paradigm into a saccade cueing task in order to examine the oscillatory dynamics of response preparation. We found that, compared to easy pro-saccades, successfully preparing a difficult anti-saccadic response was characterized by an increase in MFC theta and the suppression of posterior alpha power prior to executing the eye movement. These findings align with a large body of literature on performance monitoring and ERPs, and indicate that MFNs, along with their signature in theta power, reflects the general process of controlling attention and adapting behaviour without the need to induce error commission, the inhibition of responses, or the presentation of negative feedback.
Resumo:
L'imputation est souvent utilisée dans les enquêtes pour traiter la non-réponse partielle. Il est bien connu que traiter les valeurs imputées comme des valeurs observées entraîne une sous-estimation importante de la variance des estimateurs ponctuels. Pour remédier à ce problème, plusieurs méthodes d'estimation de la variance ont été proposées dans la littérature, dont des méthodes adaptées de rééchantillonnage telles que le Bootstrap et le Jackknife. Nous définissons le concept de double-robustesse pour l'estimation ponctuelle et de variance sous l'approche par modèle de non-réponse et l'approche par modèle d'imputation. Nous mettons l'emphase sur l'estimation de la variance à l'aide du Jackknife qui est souvent utilisé dans la pratique. Nous étudions les propriétés de différents estimateurs de la variance à l'aide du Jackknife pour l'imputation par la régression déterministe ainsi qu'aléatoire. Nous nous penchons d'abord sur le cas de l'échantillon aléatoire simple. Les cas de l'échantillonnage stratifié et à probabilités inégales seront aussi étudiés. Une étude de simulation compare plusieurs méthodes d'estimation de variance à l'aide du Jackknife en terme de biais et de stabilité relative quand la fraction de sondage n'est pas négligeable. Finalement, nous établissons la normalité asymptotique des estimateurs imputés pour l'imputation par régression déterministe et aléatoire.
Resumo:
Cette thèse comporte trois essais sur les interactions sociales en sciences économiques. Ces essais s’intéressent à la fois au côté théeorique qu’empirique des interactions sociales. Le premier essai (chapitre 2) se concentre sur l’étude (théorique et empirique) de la formation de réseaux sociaux au sein de petites économies lorsque les individus ont des préférences homophilique et une contrainte de temps. Le deuxième essai (chapitre 3) se concentre sur l’étude (principalement empirique) de la formation de réseau sociaux au sein de larges économies où les comportement d’individus très distants sont aproximativement indépendants. Le dernier essai (chapitre 4) est une étude empirique des effets de pairs en éducation au sein des écoles secondaires du Québec. La méthode structurelle utilisée permet l’identification et l’estimation de l’effet de pairs endogène et des effets de pairs exogènes, tout en contrôlant pour la présence de chocs communs.
Resumo:
Le sujet principal de cette thèse porte sur l'étude de l'estimation de la variance d'une statistique basée sur des données d'enquête imputées via le bootstrap (ou la méthode de Cyrano). L'application d'une méthode bootstrap conçue pour des données d'enquête complètes (en absence de non-réponse) en présence de valeurs imputées et faire comme si celles-ci étaient de vraies observations peut conduire à une sous-estimation de la variance. Dans ce contexte, Shao et Sitter (1996) ont introduit une procédure bootstrap dans laquelle la variable étudiée et l'indicateur de réponse sont rééchantillonnés ensemble et les non-répondants bootstrap sont imputés de la même manière qu'est traité l'échantillon original. L'estimation bootstrap de la variance obtenue est valide lorsque la fraction de sondage est faible. Dans le chapitre 1, nous commençons par faire une revue des méthodes bootstrap existantes pour les données d'enquête (complètes et imputées) et les présentons dans un cadre unifié pour la première fois dans la littérature. Dans le chapitre 2, nous introduisons une nouvelle procédure bootstrap pour estimer la variance sous l'approche du modèle de non-réponse lorsque le mécanisme de non-réponse uniforme est présumé. En utilisant seulement les informations sur le taux de réponse, contrairement à Shao et Sitter (1996) qui nécessite l'indicateur de réponse individuelle, l'indicateur de réponse bootstrap est généré pour chaque échantillon bootstrap menant à un estimateur bootstrap de la variance valide même pour les fractions de sondage non-négligeables. Dans le chapitre 3, nous étudions les approches bootstrap par pseudo-population et nous considérons une classe plus générale de mécanismes de non-réponse. Nous développons deux procédures bootstrap par pseudo-population pour estimer la variance d'un estimateur imputé par rapport à l'approche du modèle de non-réponse et à celle du modèle d'imputation. Ces procédures sont également valides même pour des fractions de sondage non-négligeables.