959 resultados para hybrid electric vehicle
Resumo:
As take up of low carbon vehicles increase, there is interest in using the energy stored in the vehicles to help maintain system frequency through ancillary services on the electricity grid system. Research into this area is generally classed as vehicle-to-grid research. In theory, the energy available from electric vehicles could be directly correlated to the vehicle's state of charge (SoC) and battery capacity during the time the car is parked and plugged in. However, not all the energy in the vehicle may be used, as some capacity is required by the driver for their next journey. As such, this paper uses data captured as part of a large scale electric vehicle trial to investigate the effect of three different types of driver routine on vehicle-to-grid availability. Each driver's behaviour is analysed to assess the energy that is available for STOR, with follow on journey requirements also considered.
Resumo:
Switched reluctance motors (SRMs) can provide an attractive traction drive for electric vehicle applications. To lower the investment in the off-board charging station facilities, a multi-functional switched reluctance motor topology is proposed on the basis of the traditional asymmetrical half-bridge converter. The SRM phase windings are employed as input filter inductors and centre-tapped windings are also developed to form symmetrical inductors for three-phase grid supply. Owing to the varying rotor position, phase inductors are unequal between one another. A hysteresis control scheme is therefore developed for grid-connection operation. In addition to AC supplies, the proposed topology can also supports the DC-source charging. A new current sharing strategy is employed to diminish the influence of the unequal winding inductances. The simulation and experimental tests are carried out to verify the proposed topology and control methods. Since this work eliminates the need for building charging station infrastructure, its potential economic impact on the automotive market can be significant.
Resumo:
This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance.
Resumo:
This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing.
Resumo:
The penetration of the electric vehicle (EV) has increased rapidly in recent years mainly as a consequence of advances in transport technology and power electronics and in response to global pressure to reduce carbon emissions and limit fossil fuel consumption. It is widely acknowledged that inappropriate provision and dispatch of EV charging can lead to negative impacts on power system infrastructure. This paper considers EV requirements and proposes a module which uses owner participation, through mobile phone apps and on-board diagnostics II (OBD-II), for scheduled vehicle charging. A multi-EV reference and single-EV real-time response (MRS2R) online algorithm is proposed to calculate the maximum and minimum adjustable limits of necessary capacity, which forms part of decision-making support in power system dispatch. The proposed EV dispatch module is evaluated in a case study and the influence of the mobile app, EV dispatch trending and commercial impact is explored.
Electric Vehicle Battery Charger: Wireless Power Transfer System Controlled by Magnetic Core Reactor
Resumo:
This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.
Resumo:
In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.
Resumo:
In recent years Electric Vehicles (EVs) are getting more importance as future transport systems, due to the increase of the concerns relevant to the greenhouse gases emission and the use fossil fuel. The management of the charging and discharging process of EVs could provide new business model for participating in the electricity markets. Moreover, vehicle to grid systems have the potential of increasing utility system flexibility. This thesis develops some models for the optimal integration of the EVs in the electricity market. In particular, the thesis focuses on the optimal bidding strategy of an EV aggregator participating to both the day ahead market and the secondary reserve market. The aggregator profit is maximized taking into account the energy balance equation, as well as the technical constraints of energy settlement, power supply and state of charge of the EVs. The results obtained by using the GAMS (General Algebraic Modelling System) environment are presented and discussed.
Resumo:
The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Kasvihuonekaasu- ja hiilidioksidipäästöt ovat kasvaneet viimeisten vuosikymmenten aikana merkittävästi. Merkittävimpiä päästöjen lähteitä ovat liikenteessä ja energiantuotannossa käytetyt fossiiliset polttoaineet. Kaikista maailman kasvihuonepäästöistä liikenne aiheuttaa noin 13 %, josta yli 80 % on tieliikenteen aiheuttamia päästöjä. Jotta tieliikenteen ai-heuttamia päästöjä saataisiin vähennettyä on tieliikenteeseen kehitettävä yhä vähäpäästöisempiä ja päästöttömiä kulkuvälineitä. Tämä on ollut yksi päätekijä sähkö- ja hybridiautojen kehitykseen. Tässä kandidaatintyössä selvitetään sähkö- ja hybridiautoissa käytettyjä jännitetasoja sekä voimansiirtojärjestelmissä käytettyjä komponentteja. Työ rajoittuu ainoastaan henkilöautoihin, joista tarkastelun kohteena ovat sähkö-, hybridi- ja muunnossähköautot. Työssä tarkastellaan myös sähkö- ja hybridiautojen tulevaisuuden näkymiä turvallisuuden ja standardoinnin kannalta. Työssä esitettyjen tietojen perusteella saadaan selkeä näkemys siitä, miten käytetyt jännitetasot ja komponentit vaihtelevat eri autovalmistajien kesken. Korkeammat jännitetasot ovat energiatehokkuuden kannalta parempia, mutta aiheuttavat vaatimuksia käyttöturvallisuuteen liittyvissä kysymyksissä.