997 resultados para histamine release inhibitor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dopaminergic, serotoninergic and GABA-ergic systems are closely involved in PRL secretion, as well as thyrotropin-releasing hormone. There is some evidence that zinc interacts with some of these neuroamines and neuropeptides. The histamine H2-receptor cimetidine stimulates PRL secretion rapidly following an intravenous injection in man. In this sense, we investigated probable inhibitory effect of zinc on prolactin secretion following cimetidine injection (300 mg). Therefore, we studied five healthy adult men, before and after oral zinc administration (25 mg elemental zinc) during three consecutive months. The results did not demonstrate any inhibitory effect of zinc on prolactin secretion. So, we originally concluded that zinc did not interact with dopamine, serotonine, gamma-aminobutyric acid and the thyrotropin-releasing hormone in humans. In addition, the intravenous administration of cimetidine did not change the serum zinc profile. © 2005 Dustri-Vertag Dr. K. Feistle.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
A Organização Mundial de Saúde recomenda o estudo e o uso de plantas medicinais regionais, como fonte de recursos para diminuir os custos dos programas de saúde pública e ampliar o número de beneficiários, sobretudo em países subdesenvolvidos e em desenvolvimento. Na Amazônia, a prática da fitoterapia já é parte integral da cultura tradicional, mas em muitas ocasiões existe uma profunda carência de conhecimento científico sobre o efeito dessas plantas. Portanto se torna essencial o estudo com base científica que justifique ou não a indicação dessas plantas para o tratamento ou prevenção doenças. Nesse contexto, as doenças alérgicas são a segunda maior complicação que afeta significativamente a qualidade de vida da população. Nas alergias, os mastócitos são células efetoras chaves participando através da liberação de diversos mediadores pró-inflamatórios, entre eles a histamina. A estabilização de mastócitos e, portanto a inibição da liberação de histamina seria um fator primordial na prevenção e/ou controle das alergias. Assim o objetivo deste trabalho foi avaliar o potencial antialérgico de 5 espécies oriundas ou adaptadas na Amazônia Connarus perrottetii var. angustifolius (Radlk) (barbatimão do pará), Fridericia chica (Bonpl.) L.G. Lohmann (pariri), Luehea speciosa Willd (açoita cavalo), Morinda citrifolia Linn (noni) e Mansoa alliacea (Lam.) A.H. Gentry (cipó d´alho) através da análise de secreção de histamina. Foi realizada a prospecção fitoquímica de extratos brutos etanólicos a 70% de cada espécie de planta (fruto, folhas e/ou casca) e avaliada a liberação de histamina de mastócitos peritoneais de rato incubados in vitro com diferentes concentrações dos extratos e/ou com agentes secretores (composto 48/80 e ionóforo A23187). O presente trabalho monstra pela primeira vez a ação inibitória dessas cinco plantas medicinais sobre a liberação de histamina. Dentre essas 5 plantas, o extrato que demonstrou um efeito mais potente foi o da casca da Connarus perrottetii var. angustifolius (Radlk). Um estudo mais aprofundado desse extrato revelou uma baixa toxicidade aguda e a ausência de genotoxicidade, o que apoiaria seu uso como planta medicinal. As frações aquosa, hexânica e de acetato de etila desse extrato também apresentaram potente efeito inibitório sobre a liberação induzida de histamina. A análise fitoquímica por cromatografia de camada delgada revelou a presença de taninos condensados, catequinas e flavonoides que poderiam ser os responsáveis por esses potentes efeitos Mediante os resultados obtidos, novas bases científicas são formadas para elucidação das informações etnofarmacológicas de plantas tradicionalmente utilizadas na região amazônica. Assim, a possibilidade de investigar alternativas terapêuticas com estes extratos, contra as afeções alérgicas ou condições em que a secreção de mastócitos seja relevante, pode favorecer sobretudo a populações de baixa renda e que habitam áreas com acesso restrito aos centros de saúde, como muitas vezes ocorre na Amazônia, mas que por outro lado tem acesso direto às plantas medicinais.
Resumo:
We review evidence that Stem Cell Factor (SCF) plays an important role in the pathophysiology of asthma. SCF is produced by a wide variety of cells present in asthmatic lung, including mast cells and eosinophils. Its receptor, c-kit, is broadly expressed on mature mast cells and eosinophils. SCF promotes recruitment of mast cell progenitors into tissues, as well as their local maturation and activation. It also promotes eosinophil survival, maturation and functional activation. SCF enhances IgE-dependent release of mediators from mast cells, including histamine, leukotrienes, cytokines (TNF-alpha, IL-5, GM-CSF) and chemokines (RANTES/CCL5, MCP-1/CCL2, TARC/CCL17 e MDC/CCL22); it is required for IL-4 production in mast cells. SCF, acting in concert with IgE, also upregulates the expression and function of CC chemokine receptors in mast cells. Structural and resident airway cells express increased levels of SCF in the bronchus of asthmatic patients. In a murine model of asthma, allergen exposure increased production of SCF by epithelial cells and alveolar macrophages, which was transient and paralleled by histamine release. SCF induced long-lived airway hyperreactivity, which was prevented by local neutralization of SCF, as well as by inhibitors of the production or activity of cysteinyl-leukotrienes. Together, these observations suggest that SCF has an important role in asthma.
Resumo:
The disturbed cytokinechemokine network could play an important role in the onset of diseases with inflammatory processes such as chronic idiopathic urticaria (CIU). Our main objectives were to evaluate the relation between proinflammatory chemokine serum levels from CIU patients and their response to autologous skin test (ASST) and basophil histamine release (BHR). We also aimed to assess the chemokine secretion by peripheral blood mononuclear cells (PBMC) upon polyclonal stimulus and to evaluate chemokine CC ligand 2/C-X-C chemokine 8 (CCL2/CXCL8) and Toll-like receptor-4 (TLR-4) expression in monocytes. We observed significantly higher serum levels of the CXCL8, CXCL9, CXCL10 and CCL2 in CIU patients compared to the healthy group, regardless of the BHR or ASST response. The basal secretion of CCL2 by PBMC or induced by Staphylococcus aureus enterotoxin A (SEA) was higher in CIU patients than in the control group, as well as for CXCL8 and CCL5 secretions upon phytohaemagglutinin stimulation. Also, up-regulation of CCL2 and CXCL8 mRNA expression was found in monocytes of patients upon SEA stimulation. The findings showed a high responsiveness of monocytes through CCL2/CXCL8 expression, contributing to the creation of a proinflammatory environment in CIU.
Resumo:
From cultures of thermophilic soil fungus Humicola grisea var thermoidea, a delta-lactam derivative (3-(2-(4-hydroxyphenyl)-2-oxoethyl)-5,6-dihydropyridin-2( 1H)-one) that displayed anti-allergic activity was isolated, which was predicted by in silico computational chemistry approaches. The in vitro anti-allergic activity was investigated by beta-hexosaminidase release assay in rat basophilic leukaemia RBL-2H3 cells. The delta-lactam derivative exhibited similar anti-allergic activity (IC50 = 18.7 +/- 6.7 mu M) in comparison with ketotifen fumarate (IC50 = 15.0 +/- 1.3 mu M) and stronger anti-allergic activity than azelastine (IC50 = 32.0 mu M). Also, the MTT cytotoxicity assay with RBL-2H3 cells showed that delta-lactam does not display cytotoxicity at concentrations lower than 50 mu M. This study suggests that the delta-lactam derivative has the potential to be used as a lead compound in the development of anti-allergic drugs for clinical use in humans.
Resumo:
Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^
Resumo:
IgG autoantibodies against the alpha-chain of the high affinity IgE receptor are claimed to play a pathogenetic role in autoimmune urticaria. The best methods for detection of functional autoantibodies are currently the autologous serum skin test and the basophil histamine release assay. A simplified and feasible screening test would facilitate the diagnosis of autoimmune urticaria. Here we offer an explanation for the difficulties in establishing a screening test for autoantibodies directed against the alpha-chain of the high affinity IgE receptor in autoimmune urticaria. Identical autoantibodies in chronic urticaria patients and healthy donors belonging to the natural autoantibody repertoire were found by sequence analysis of anti-alpha-chain autoantibodies isolated by repertoire cloning from antibody libraries. These natural autoantibodies bound to the receptor and triggered histamine release but only if IgE was previously removed from the receptor. Diagnostic assays used for detection of antibodies directed against the IgE receptor may require signal comparison with and without the artificial removal of IgE, immune complexes, and complement in order to avoid false positive or negative results. After IgE removal diagnostic tests will detect natural autoantibodies against the high affinity IgE receptor regardless of whether they are pathogenic or not.
Resumo:
The complement system functions as a major effector for both the innate and adaptive immune response. Activation of the complement cascade by either the classical, alternative, or lectin pathway promotes the proteolysis of C3 and C5 thereby generating C3a and C5a. Referred to as anaphylatoxins, the C3a and C5a peptides mediate biological effects upon binding to their respective receptors; C3a binds to the C3a receptor (C3aR) while C5a binds to the C5a receptor (C5aR, CD88). Both C3a and C5a are known for their broad proinflammatory effects. Elevated levels of both peptides have been isolated from patients with a variety of inflammatory diseases such as COPD, asthma, RA, SLE, and sepsis. Recent studies suggest that C5a is a critical component in the acquired neutrophil dysfunction, coagulopathy, and progressive multi-organ dysfunction characteristic of sepsis. The primary hypothesis of this dissertation was that preventing C3a-C3aR and C5a-C5aR mediated pro-inflammatory effects would improve survival in endotoxic, bacteremic and septic shock. To test this hypothesis, the murine C3aR and C5aR genes were disrupted. Following disruption of both the C3aR and C5aR genes, no abnormalities were identified other than the absence of their respective mRNA and protein. In models of both endotoxic and bacteremic shock, C3aR deficient mice suffered increased mortality when compared to their wild type littermates. C3aR deficient mice also had elevated circulating IL-1β levels. Using a model of sepsis, C3aR deficient mice had a higher circulating concentration of IL-6 and decreased peritoneal inflammatory infiltration. While these results were unexpected, they support an emerging role for C3a in immunomodulation. In contrast, following endotoxic or bacteremic shock, C5aR deficient mice experienced increased survival, less hemoconcentration and less thrombocytopenia. It was later determined that C5a mediated histamine release significantly contributes to host morbidity and mortality in bacteremic shock. These studies provide evidence that C5a functions primarily as a proinflammatory molecule in models of endotoxic and bacteremic shock. In the same models, C3a-C3aR interactions suppress the inflammatory response and protect the host. Collectively, these results present in vivo evidence that C3a and C5a have divergent biological functions. ^
Resumo:
Mast cells (MC) are stem cell factor-dependent tissue-based hematopoietic cells with substantial functional heterogeneity. Cord blood-derived human MC (hMC) express functional receptors for IL-5, and IL-5 mediates stem cell factor-dependent comitogenesis of hMC in vitro. Although IL-5 is not required for normal hMC development, we considered that it might prime hMC for their high-affinity Fc receptor for IgE (FcɛRI)-dependent generation of cytokines, as previously demonstrated for IL-4. Compared with hMC maintained in stem cell factor alone, hMC primed with IL-5 expressed 2- to 4-fold higher steady-state levels of TNF-α, IL-5, IL-13, macrophage inflammatory protein 1α, and granulocyte-macrophage colony-stimulating factor transcripts 2 h after FcɛRI crosslinking and secreted 2- to 5-fold greater quantities of the corresponding cytokines, except IL-13, at 6 h. Unlike IL-4, IL-5 priming did not enhance FcɛRI-dependent histamine release. Thus, IL-5 augments cytokine production by hMC by a mechanism distinct from that of IL-4 and with a different resultant profile of cytokine production. These observations suggest a potentially autocrine effect of IL-5 on hMC for amplification of allergic immune responses, in addition to its recognized paracrine effects on eosinophils, and implicate both IL-4 and IL-5 in the modulation of the hMC phenotype.
Resumo:
Nasal spray from lemon and quince (LQNS) is used to treat hay fever symptoms and has been shown to inhibit histamine release from mast cells in vitro. Forty-three patients with grass pollen allergy (GPA) were randomized to be treated either with placebo or LQNS for one week, respectively, in a cross-over study. At baseline and after the respective treatments patients were provoked with grass pollen allergen. Outcome parameters were nasal flow measured with rhinomanometry (primary), a nasal symptom score, histamine in the nasal mucus and tolerability. In the per protocol population absolute inspiratory nasal flow 10 and 20 min after provocation was higher with LQNS compared to placebo (-37 ± 87 mL/s; p = 0.027 and -44 ± 85 mL/s; p = 0.022). The nasal symptom score showed a trend (3.3 ± 1.8 in the placebo and 2.8 ± 1.5 in the LQNS group; p = 0.070) in favor of LQNS; the histamine concentration was not significantly different between the groups. Tolerability of both, LQNS and placebo, was rated as very good. LQNS seems to have an anti-allergic effect in patients with GPA. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
The histamine H4 receptor regulates the inflammatory response. However, it is not known whether this receptor has a functional role in human neutrophils. We found that fMLP (1 μM), but not histamine (0.1-1 μM), induced Mac-1-dependent adhesion, polarization, and degranulation (release of lactoferrin). A pretreatment of neutrophils with histamine (0.001-1 μM) or JNJ 28610244 (0.1-10 μM), a specific H4 receptor agonist, led to inhibition of degranulation. Total inhibition of degranulation was obtained with 0.1 μM histamine and 10 μM JNJ 28610244. Furthermore, such inhibition by histamine of degranulation was reversed by JNJ 7777120 and JNJ 28307474, two selective H4 receptor antagonists. However, neither histamine nor the H4 receptor agonist JNJ 28610244 prevented fMLP-induced, Mac-1-dependent adhesion, indicating that the H4 receptor may block signals emanating from Mac-1-controlling degranulation. Likewise, engagement of the H4 receptor by the selective agonist JNJ 28610244 blocked Mac-1-dependent activation of p38 MAPK, the kinase that controls neutrophil degranulation. We also show expression of the H4 receptor at the mRNA level in ultrapure human neutrophils and myeloid leukemia PLB-985 cells. We concluded that engagement of this receptor by selective H4 receptor agonists may represent a good, therapeutic approach to accelerate resolution of inflammation.