960 resultados para high-molecular weight


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a new and simple method to determine the molecular weight of proteins in dilute solution, with an error smaller than similar to 10%, by using the experimental data of a single small-angle X-ray scattering (SAXS) curve measured on a relative scale. This procedure does not require the measurement of SAXS intensity on an absolute scale and does not involve a comparison with another SAXS curve determined from a known standard protein. The proposed procedure can be applied to monodisperse systems of proteins in dilute solution, either in monomeric or multimeric state, and it has been successfully tested on SAXS data experimentally determined for proteins with known molecular weights. It is shown here that the molecular weights determined by this procedure deviate from the known values by less than 10% in each case and the average error for the test set of 21 proteins was 5.3%. Importantly, this method allows for an unambiguous determination of the multimeric state of proteins with known molecular weights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this work were preparation and physical-chemical characterization of a microparticulate release system for delivery of enoxaparin sodium (ENX), a low-molecular-weight heparin, as a potential vehicle for optimization of deep venous thrombosis therapy. Microparticles (MPs) containing ENX were prepared from polylactide-co-glycolic acid [PLGA; (50: 50)] by a double emulsification/solvent evaporation method. The preparation parameters, such as proportion ENX/PLGA, surfactant concentration, type, time, and speed of stirring, were evaluated. The encapsulation efficiency and yield process were determined and optimized, and the in vitro release profile was analysed at 35 days. The MPs showed a spherical shape with smooth and regular surfaces. The size distribution showed a unimodal profile with an average size of 2.0 +/- 0.9 mu m. The low encapsulation efficiency (< 30%), characteristic of hydrophilic macromolecules was improved, reaching 50.2% with a procedure yield of 71.3%. The in vitro profile of ENX release from the MPs was evaluated and showed pseudo-zero-order kinetics. This indicated that diffusion was the main drug release mechanism. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1783-1792, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain a Ph.D. Degree in Chemical Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Different serum levels of the IgG/IgE for Paracoccidioides brasiliensis high mass molecular (hMM) fraction (~366kDa) in the acute and chronic forms of the disease have been reported. Considering the nonexistence of hMM fraction investigation involving clinical isolates of P. brasiliensis, the present study aimed to investigate the presence of the hMM fraction (~366kDa) in cell free antigens (CFA) from P. brasiliensis clinical isolates. METHODS: CFA from 10 clinical isolates and a reference strain (Pb18) were submitted to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by gel image capturing and densitometer analysis. Additionally, CFA from 20 isolates and Pb18 were analyzed by capture ELISA (cELISA) using polyclonal (polAb) or monoclonal (mAb) antibodies to the hMM fraction. RESULTS: The presence of the hMM component was observed in CFA of all samples analyzed by SDS-PAGE/densitometry and by cELISA. In addition, Pearson's correlation test demonstrated stronger coefficients between hMM fraction levels using pAb and mAb (R = 0.853) in cELISA. CONCLUSIONS: The soluble hMM fraction was present in all the P. brasiliensis clinical isolates analyzed and the reference strain Pb18, which could be used as a source of this antigen. The work also introduces for first time, the cELISA method for P. brasiliensis hMM fraction detection. Analysis also suggests that detection is viable using polAb or mAb and this methodology may be useful for future investigation of the soluble hMM fraction (~366kDa) in sera from PCM patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: During histoplasmosis, Histoplasma capsulatum soluble antigens (CFAg) can be naturally released by yeast cells. Because CFAg can be specifically targeted during infection, in the present study we investigated CFAg release in experimental murine histoplasmosis, and evaluated the host humoral immune response against high-molecular-mass antigens (hMMAg. >150 kDa), the more immunogenic CFAg fraction. METHODS: Mice were infected with 2.2x10(4) H. capsulatum IMT/HC128 yeast cells. The soluble CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg circulating immune complexes (CIC) levels were determined by enzymelinked immunosorbent assay, at days 0, 7, 14, and 28 post-infection. RESULTS: We observed a progressive increase in circulating levels of CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg CIC after H. capsulatum infection. The hMMAg showed a high percentage of carbohydrates and at least two main immunogenic components. CONCLUSIONS: We verified for the first time that hMMAg from H. capsulatum IMT/HC128 strain induce humoral immune response and lead to CIC formation during experimental histoplasmosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although extended secondary prophylaxis with low-molecular-weight heparin was recently shown to be more effective than warfarin for cancer-related venous thromboembolism, its cost-effectiveness compared to traditional prophylaxis with warfarin is uncertain. We built a decision analytic model to evaluate the clinical and economic outcomes of a 6-month course of low-molecular-weight heparin or warfarin therapy in 65-year-old patients with cancer-related venous thromboembolism. We used probability estimates and utilities reported in the literature and published cost data. Using a US societal perspective, we compared strategies based on quality-adjusted life-years (QALYs) and lifetime costs. The incremental cost-effectiveness ratio of low-molecular-weight heparin compared with warfarin was 149,865 dollars/QALY. Low-molecular-weight heparin yielded a quality-adjusted life expectancy of 1.097 QALYs at the cost of 15,329 dollars. Overall, 46% (7108 dollars) of the total costs associated with low-molecular-weight heparin were attributable to pharmacy costs. Although the low-molecular-weigh heparin strategy achieved a higher incremental quality-adjusted life expectancy than the warfarin strategy (difference of 0.051 QALYs), this clinical benefit was offset by a substantial cost increment of 7,609 dollars. Cost-effectiveness results were sensitive to variation of the early mortality risks associated with low-molecular-weight heparin and warfarin and the pharmacy costs for low-molecular-weight heparin. Based on the best available evidence, secondary prophylaxis with low-molecular-weight heparin is more effective than warfarin for cancer-related venous thromboembolism. However, because of the substantial pharmacy costs of extended low-molecular-weight heparin prophylaxis in the US, this treatment is relatively expensive compared with warfarin.